Bakštein, E., Sieger, T., Novák, D., Růžička, F., Jech, R.: Automated atlas fitting for deep brain stimulation surgery based on microelectrode neuronal recordings. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/3, pp. 105–111. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9023-3_19
CrossRef
Google Scholar
Bakštein, E., Sieger, T., Růžička, F., Novák, D., Jech, R.: Fusion of microelectrode neuronal recordings and MRI landmarks for automatic atlas fitting in deep brain stimulation surgery. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 175–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_19
CrossRef
Google Scholar
Bakštein, E., et al.: Methods for automatic detection of artifacts in microelectrode recordings. J. Neurosci. Meth. 290, 39–51 (2017)
CrossRef
Google Scholar
Bjerknes, S., et al.: Multiple microelectrode recordings in STN-DBS surgery for Parkinson’s disease: a randomized study. Mov. Disord. Clin. Pract. 5(3), 296–305 (2018)
Google Scholar
Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_13
CrossRef
Google Scholar
Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11624–11632. IEEE, Long Beach, CA, USA, June 2019
Google Scholar
Coenen, V.A., Prescher, A., Schmidt, T., Picozzi, P., Gielen, F.L.H.: What is dorso-lateral in the subthalamic Nucleus (STN)?–a topographic and anatomical consideration on the ambiguous description of today’s primary target for deep brain stimulation (DBS) surgery. Acta Neurochir. (Wien) 150(11), 1163–1165 (2008)
CrossRef
Google Scholar
Groiss, S., Wojtecki, L., Südmeyer, M., Schnitzler, A.: Review: deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2(6), 379–391 (2009)
CrossRef
Google Scholar
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)
CrossRef
Google Scholar
Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)
CrossRef
Google Scholar
Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov. Disord. 21(9), 1425–1431 (2006)
CrossRef
Google Scholar
Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56(3), 907–922 (2011)
CrossRef
Google Scholar
Reinhold, J.C., Dewey, B.E., Carass, A., Prince, J.L.: Evaluating the impact of intensity normalization on MR image synthesis. arXiv:1812.04652 [cs], December 2018. arXiv: 1812.04652
Sieger, T., et al.: Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus. Proc. Natl. Acad. Sci. 112(10), 3116–3121 (2015)
CrossRef
Google Scholar
Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)
CrossRef
Google Scholar
Visser, E., Keuken, M.C., Forstmann, B.U., Jenkinson, M.: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age. Neuroimage 139, 324–336 (2016)
CrossRef
Google Scholar
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
CrossRef
Google Scholar
Zwirner, J., et al.: Subthalamic nucleus volumes are highly consistent but decrease age-dependently-a combined magnetic resonance imaging and stereology approach in humans. Hum. Brain Mapp. 38(2), 909–922 (2017)
CrossRef
Google Scholar