Skip to main content

VGM-Bench: FPU Benchmark Suite for Computer Vision, Computer Graphics and Machine Learning Applications

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12471)

Abstract

With the Internet-of-things revolution, embedded devices are in charge of an ever increasing number of tasks ranging from sensing, up to Artificial Intelligence (AI) functions. In particular, AI is gaining importance since it can dramatically improve the QoS perceived by the final user and it allows to cope with problems whose algorithmic solution is hard to find. However, the associated computational requirements, mostly made of floating-point processing, impose a careful design and tuning of the computing platforms. In this scenario, there is a need for a set of benchmarks representative of the emerging AI applications and useful to compare the efficiency of different architectural solutions and computing platforms. In this paper we present a suite of benchmarks encompassing Computer Graphics, Computer Vision and Machine Learning applications, which are greatly used in many AI scenarios. Such benchmarks, differently from other suites, are kernels tailored to be effectively executed in bare-metal and specifically stress the floating-point support offered by the computing platform.

Keywords

  • Benchmarks
  • Machine learning
  • Artificial intelligence
  • Floating-point
  • FPU.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-60939-9_23
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-60939-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Lamp: Lightweight application-specific modular processor. http://www.lamp-platform.org

  2. Freertos (2003). https://www.freertos.org

  3. Spec cpu2006 (2006). https://www.spec.org/cpu2006/

  4. Mbed (2009). https://www.mbed.com/

  5. LSTMS for time series in pytorch (2019). https://www.jessicayung.com/lstms-for-time-series-in-pytorch/. Accessed 05 Aug 2019

  6. Agosta, G., et al.: The RECIPE approach to challenges in deeply heterogeneous high performance systems. Microprocess. Microsyst. 77, 103185 (2020). https://doi.org/10.1016/j.micpro.2020.103185. ISSN 0141-9331

    CrossRef  Google Scholar 

  7. Agosta, G., et al.: Challenges in deeply heterogeneous high performance systems. In: 2019 22nd Euromicro Conference on Digital System Design (DSD), August 2019. https://doi.org/10.1109/DSD.2019.00068

  8. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton University, January 2011

    Google Scholar 

  9. Fan, W., Wang, K., Cayre, F., Xiong, Z.: 3D lighting-based image forgery detection using shape-from-shading. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1777–1781. IEEE (2012)

    Google Scholar 

  10. Fornaciari, al.: Reliable power and time-constraints-aware predictive management of heterogeneous exascale systems. In: Mudge, T.N., Pnevmatikatos, D.N. (eds.) Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Pythagorion, Greece, 15–19 July 2018, pp. 187–194. ACM (2018). https://doi.org/10.1145/3229631.3239368

  11. Geiger, Andreas., Roser, Martin, Urtasun, Raquel: Efficient large-scale stereo matching. In: Kimmel, Ron, Klette, Reinhard, Sugimoto, Akihiro (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    CrossRef  Google Scholar 

  12. Geneva, P., Maley, J., Huang, G.: An efficient SCHMIDT-EKF for 3d visual-inertial slam. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12105–12115 (2019)

    Google Scholar 

  13. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2222–2232 (2016)

    CrossRef  MathSciNet  Google Scholar 

  14. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The mälardalen wcet benchmarks - past, present and future. In: Proceedings of the 10th International Workshop on Worst-Case Execution Time Analysis, July 2010

    Google Scholar 

  15. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: a free, commercially representative embedded benchmark suite. In: 2001 IEEE International Workshop Proceedings of the Workload Characterization, 2001. WWC-4, pp. 3–14. WWC 2001 (2001)

    Google Scholar 

  16. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)

    Google Scholar 

  17. Leisch, F., Dimitriadou, E.: mlbench: Machine Learning Benchmark Problems, r package version 2.1-1 (2010)

    Google Scholar 

  18. Max, N.: Weights for computing vertex normals from facet normals. J. Graph. Tools 4(2), 1–6 (1999)

    CrossRef  Google Scholar 

  19. Möller, T.: A fast triangle-triangle intersection test. J. Graph. Tools 2(2), 25–30 (1997)

    CrossRef  Google Scholar 

  20. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, vol. 821. Wiley, Hoboken (2012)

    Google Scholar 

  21. Paszke, A., et al.: Automatic Differentiation in Pytorch (2017)

    Google Scholar 

  22. Romanoni, A., Matteucci, M.: Mesh-based camera pairs selection and occlusion-aware masking for mesh refinement. Pattern Recogn. Lett. 125, 364–372 (2019)

    CrossRef  Google Scholar 

  23. Sansottera, A., Zoni, D., Cremonesi, P., Fornaciari, W.: Consolidation of multi-tier workloads with performance and reliability constraints. In: 2012 International Conference on High Performance Computing Simulation (HPCS), pp. 74–83 (2012). https://doi.org/10.1109/HPCSim.2012.6266893

  24. Scotti, G., Zoni, D.: A fresh view on the microarchitectural design of FPGA-based risc cpus in the IoT era. J. Low Power Electron. Appl. 9, 19 (2019). https://doi.org/10.3390/jlpea9010009

  25. Shiue, L.J., Jones, I., Peters, J.: A realtime GPU subdivision kernel. In: ACM Transactions on Graphics (TOG). vol. 24, pp. 1010–1015. ACM (2005)

    Google Scholar 

  26. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  27. Thomas, S., et al.: CortexSuite: a synthetic brain benchmark suite. In: International Symposium on Workload Characterization (IISWC), October 2014

    Google Scholar 

  28. Vu, H.H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale multi-view stereo. In: Computer Vision and Pattern Recognition, pp. 1430–1437. IEEE (2009)

    Google Scholar 

  29. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs: characterization and methodological considerations. In: Proceedings of the 22nd Annual International Symposium on Computer Architecture, pp. 24–36. ISCA 1995

    Google Scholar 

  30. Xu, J., Sun, Y., Zhang, L.: A mapping-based approach to eliminating self-intersection of offset paths on mesh surfaces for CNC machining. Computer-Aided Design 62, 131–142 (2015)

    CrossRef  Google Scholar 

  31. Zaharescu, Andrei., Boyer, Edmond, Horaud, Radu: TransforMesh : a topology-adaptive mesh-based approach to surface evolution. In: Yagi, Yasushi, Kang, Sing Bing, Kweon, In So, Zha, Hongbin (eds.) ACCV 2007. LNCS, vol. 4844, pp. 166–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76390-1_17

    CrossRef  Google Scholar 

  32. Zoni, D., Cremona, L., Fornaciari, W.: All-digital control-theoretic scheme to optimize energy budget and allocation in multi-cores. IEEE Trans. Comput. 69(5), 706–721 (2020). https://doi.org/10.1109/TC.2019.2963859

    CrossRef  MATH  Google Scholar 

  33. Zoni, D., Cremona, L., Fornaciari, W.: All-digital energy-constrained controller for general-purpose accelerators and cpus. IEEE Embedded Syst. Lett. 12(1), 17–20 (2020). https://doi.org/10.1109/LES.2019.2914136

    CrossRef  MATH  Google Scholar 

  34. Zoni, D., Galimberti, A., Fornaciari, W.: Flexible and scalable FPGA-oriented design of multipliers for large binary polynomials. IEEE Access 8, 75809–75821 (2020). https://doi.org/10.1109/ACCESS.2020.2989423

    CrossRef  Google Scholar 

Download references

Acknowledgments

Work supported by the H2020 FET-HPC project “RECIPE”, G. A. no. 801137. More information can be found in  [6, 7] and  [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cremona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cremona, L., Fornaciari, W., Galimberti, A., Romanoni, A., Zoni, D. (2020). VGM-Bench: FPU Benchmark Suite for Computer Vision, Computer Graphics and Machine Learning Applications. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2020. Lecture Notes in Computer Science(), vol 12471. Springer, Cham. https://doi.org/10.1007/978-3-030-60939-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60939-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60938-2

  • Online ISBN: 978-3-030-60939-9

  • eBook Packages: Computer ScienceComputer Science (R0)