Skip to main content

BETULA: Numerically Stable CF-Trees for BIRCH Clustering

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2020)

Abstract

BIRCH clustering is a widely known approach for clustering, that has influenced much subsequent research and commercial products. The key contribution of BIRCH is the Clustering Feature tree (CF-Tree), which is a compressed representation of the input data. As new data arrives, the tree is eventually rebuilt to increase the compression. Afterward, the leaves of the tree are used for clustering. Because of the data compression, this method is very scalable. The idea has been adopted for example for k-means, data stream, and density-based clustering.

Clustering features used by BIRCH are simple summary statistics that can easily be updated with new data: the number of points, the linear sums, and the sum of squared values. Unfortunately, how the sum of squares is then used in BIRCH is prone to catastrophic cancellation.

We introduce a replacement cluster feature that does not have this numeric problem, that is not much more expensive to maintain, and which makes many computations simpler and hence more efficient. These cluster features can also easily be used in other work derived from BIRCH, such as algorithms for streaming data. In the experiments, we demonstrate the numerical problem and compare the performance of the original algorithm compared to the improved cluster features.

Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project A2. https://sfb876.tu-dortmund.de/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f.

References

  1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003). https://doi.org/10.1016/B978-012722442-8/50016-1

  2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB, pp. 852–863 (2004). https://doi.org/10.1016/B978-012088469-8.50075-9

  3. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: SIGMOD, pp. 49–60 (1999). https://doi.org/10.1145/304182.304187

  4. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)

    Google Scholar 

  5. Bonner, R.E.: On some clustering techniques. IBM J. Res. Dev. 8(1), 22–32 (1964)

    Article  Google Scholar 

  6. Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large databases. In: KDD, pp. 9–15 (1998)

    Google Scholar 

  7. Breunig, M.M., Kriegel, H., Kröger, P., Sander, J.: Data bubbles: quality preserving performance boosting for hierarchical clustering. In: SIGMOD, pp. 79–90 (2001). https://doi.org/10.1145/375663.375672

  8. Breunig, M.M., Kriegel, H.-P., Sander, J.: Fast hierarchical clustering based on compressed data and OPTICS. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 232–242. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_23

    Chapter  Google Scholar 

  9. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM, pp. 328–339 (2006). https://doi.org/10.1137/1.9781611972764.29

  10. Chiu, T., Fang, D., Chen, J., Wang, Y., Jeris, C.: A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: KDD, pp. 263–268 (2001). https://doi.org/10.1145/502512.502549

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Estivill-Castro, V.: Why so many clustering algorithms: a position paper. SIGKDD Explor. 4(1), 65–75 (2002)

    Article  Google Scholar 

  13. Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO: BIRCH meets coresets for k-means clustering. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 481–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_41

    Chapter  Google Scholar 

  14. Fraley, C., Raftery, A.E.: Bayesian regularization for normal mixture estimation and model-based clustering. J. Classif. 24(2), 155–181 (2007). https://doi.org/10.1007/s00357-007-0004-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Ganti, V., Gehrke, J., Ramakrishnan, R.: DEMON: mining and monitoring evolving data. IEEE Trans. Knowl. Data Eng. 13(1), 50–63 (2001). https://doi.org/10.1109/69.908980

    Article  Google Scholar 

  16. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  17. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011). https://doi.org/10.1007/s10115-010-0342-8

    Article  Google Scholar 

  18. Kriegel, H.-P., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: are we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2017). https://doi.org/10.1007/s10115-016-1004-2

    Article  Google Scholar 

  19. Lang, A., Schubert, E.: BETULA: numerically stable CF-trees for BIRCH clustering. CoRR abs/2006.12881 (2020). https://arxiv.org/abs/2006.12881

  20. Ng, R.T., Han, J.: CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002). https://doi.org/10.1109/TKDE.2002.1033770

    Article  Google Scholar 

  21. Schubert, E., Gertz, M.: Numerically stable parallel computation of (co-)variance. In: SSDBM, pp. 10:1–10:12 (2018). https://doi.org/10.1145/3221269.3223036

  22. Schubert, E., Zimek, A.: ELKI: a large open-source library for data analysis - ELKI release 0.7.5 “Heidelberg”. CoRR abs/1902.03616 (2019)

    Google Scholar 

  23. Zhang, T.: Data clustering for very large datasets plus applications. Technical report 1355, University of Wisconsin Madison (1996)

    Google Scholar 

  24. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD, pp. 103–114 (1996). https://doi.org/10.1145/233269.233324

  25. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1(2), 141–182 (1997). https://doi.org/10.1023/A:1009783824328

    Article  Google Scholar 

  26. Zhang, T., Ramakrishnan, R., Livny, M.: Fast density estimation using CF-kernel for very large databases. In: KDD, pp. 312–316 (1999). https://doi.org/10.1145/312129.312266

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, A., Schubert, E. (2020). BETULA: Numerically Stable CF-Trees for BIRCH Clustering. In: Satoh, S., et al. Similarity Search and Applications. SISAP 2020. Lecture Notes in Computer Science(), vol 12440. Springer, Cham. https://doi.org/10.1007/978-3-030-60936-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60936-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60935-1

  • Online ISBN: 978-3-030-60936-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics