Skip to main content

Transparent Shepherding: A Rule-Based Learning Shepherd for Human Swarm Teaming

  • Chapter
  • First Online:
Shepherding UxVs for Human-Swarm Teaming

Abstract

This chapter aims to demonstrate how rule-based Artificial Intelligence algorithms can address a few human swarm teaming challenges. We will start from the challenges identified by the cognitive engineering community for building human autonomy teaming and how they scale to human swarm teaming. The discussion will follow with a description of rule-based machine learning with a focus on learning classifier systems as a representative for these algorithms and their benefits for human swarm teaming. Shepherding affords a human to manage a swarm by teaming with an autonomous single shepherd. A learning classifier system is designed to learn behaviour needed to be exhibited by the shepherd. Results demonstrate the effectiveness of the rule-based XCS model to capture shepherding behaviour, where the XCS model achieves comparable performance to the standard Strömbom’s shepherding method as measured by the number of steps needed by a sheep-dog to guide group of sheep to target destination. These results are promising and demonstrate that learning classifier systems could design autonomous shepherds for new type of shepherding tasks and scenarios that we may not have rules for today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: Lessons learned with the PR2. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5568–5575. IEEE, Piscataway (2011)

    Google Scholar 

  2. Bond, A.H., Gasser, L.: Readings in Distributed Artificial Intelligence. Morgan Kaufmann, Burlington (2014)

    Google Scholar 

  3. Bull, L., Fogarty, T.C., Snaith, M.: Evolution in multi-agent systems: Evolving communicating classifier systems for gait in a quadrupedal robot. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 382–388. Morgan Kaufmann, Burlington (1995)

    Google Scholar 

  4. Butz, M.: Rule-Based Evolutionary Online Learning Systems: Learning Bound, Classification, and Prediction (2004)

    Google Scholar 

  5. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Butz, M.V., Goldberg, D.E.: Bounding the population size in XCS to ensure reproductive opportunities. In: Genetic and Evolutionary Computation Conference, pp. 1844–1856. Springer, Berlin (2003)

    Google Scholar 

  7. Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in XCS. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), vol. 935, p. 942. Citeseer (2001)

    Google Scholar 

  8. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: International Workshop on Learning Classifier Systems, pp. 253–272. Springer, Berlin (2000)

    Google Scholar 

  9. Cao, Y., Ireson, N., Bull, L., Miles, R.: Design of a traffic junction controller using classifier system and fuzzy logic. In: International Conference on Computational Intelligence, pp. 342–353. Springer, Berlin (1999)

    Google Scholar 

  10. Carse, B., Fogarty, T.C., Munro, A.: Adaptive distributed routing using evolutionary fuzzy control. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 389–396. Morgan Kaufmann, Burlington (1995)

    Google Scholar 

  11. Carse, B., Fogarty, T.C., Munro, A.: Evolving temporal fuzzy rule-bases for distributed routing control in telecommunication networks. Genetic Algorithms Soft Comput. Stud. Fuzziness Soft Comput. 8, 467–488 (1996)

    Google Scholar 

  12. Chen, J.Y., Procci, K., Boyce, M., Wright, J., Garcia, A., Barnes, M.: Situation awareness-based agent transparency. Technical Report, Army Research Lab Aberdeen Proving Ground MD Human Research and Engineering …(2014)

    Google Scholar 

  13. Debie, E., Shafi, K.: Implications of the curse of dimensionality for supervised learning classifier systems: theoretical and empirical analyses. Pattern Anal. Appl. 22(2), 519–536 (2019). https://doi.org/10.1007/s10044-017-0649-0

    Article  MathSciNet  Google Scholar 

  14. Debie, E., Shafi, K., Lokan, C., Merrick, K.: Investigating differential evolution based rule discovery in learning classifier systems. In: 2013 IEEE Symposium on Differential Evolution (SDE), pp. 77–84. IEEE, Piscataway (2013)

    Google Scholar 

  15. Debie, E., Shafi, K., Merrick, K., Lokan, C.: An online evolutionary rule learning algorithm with incremental attribute discretization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1116–1123. IEEE, Piscataway (2014)

    Google Scholar 

  16. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Dorigo, M., Schnepf, U.: Genetics-based machine learning and behavior-based robotics: a new synthesis. IEEE Trans. Syst. Man Cybern. 23(1), 141–154 (1993)

    Article  Google Scholar 

  18. Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.: Argumentation-based inference and decision making–a medical perspective. IEEE Intell. Syst. 22(6), 34–41 (2007)

    Article  Google Scholar 

  19. Fredivianus, N., Prothmann, H., Schmeck, H.: XCS revisited: a novel discovery component for the extended classifier system. In: Asia-Pacific Conference on Simulated Evolution and Learning, pp. 289–298. Springer, Berlin (2010)

    Google Scholar 

  20. Hayes, B., Shah, J.A.: Improving robot controller transparency through autonomous policy explanation. In: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 303–312. IEEE, Piscataway (2017)

    Google Scholar 

  21. Holland, J.: Progress in theoretical biology. Adaptation 4, 264–293 (1976)

    Google Scholar 

  22. Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning classifier systems: New models, successful applications. Inf. Process. Lett. 82(1), 23–30 (2002)

    Article  MathSciNet  Google Scholar 

  23. Irvan, M., Yamada, T., Terano, T.: Is XCS approach good for organizational-learning oriented classifier systems? In: 24th Annual Conference, 2010, pp. 1C52–1C52 (2010)

    Google Scholar 

  24. Klien, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19(6), 91–95 (2004)

    Article  Google Scholar 

  25. Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137. ACM, New York (2015)

    Google Scholar 

  26. McDermotta, P.L., Walkera, K.E., Dominguez, C.O., Nelsonb, A., Kasdaglis, N.: Quenching the thirst for human-machine teaming guidance: Helping military systems acquisition leverage cognitive engineering research. In: 13th International Conference on Naturalistic Decision Making, pp. 236–240 (2017)

    Google Scholar 

  27. Mercado, J.E., Rupp, M.A., Chen, J.Y., Barnes, M.J., Barber, D., Procci, K.: Intelligent agent transparency in human–agent teaming for multi-UXV management. Hum. Factors 58(3), 401–415 (2016)

    Article  Google Scholar 

  28. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  29. Orriols-Puig, A., Llorà, X., Goldberg, D.E.: How xcs deals with rarities in domains with continuous attributes. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1023–1030. ACM, New York (2010)

    Google Scholar 

  30. Sabzehzar, A., Shan, W., Panahi, M.S., Saremi, O.: An improved eXtended classifier system for the real-time-input real-time-output (XCSRR) stability control of a biped robot. Procedia Comput. Sci. 61, 492–499 (2015)

    Article  Google Scholar 

  31. Saxon, S., Barry, A.: XCS and the monk’s problems. In: International Workshop on Learning Classifier Systems, pp. 223–242. Springer, Berlin (1999)

    Google Scholar 

  32. Schulenburg, S., Ross, P.: Strength and money: An LCS approach to increasing returns. In: International Workshop on Learning Classifier Systems, pp. 114–137. Springer, Berlin (2000)

    Google Scholar 

  33. Sen, S., Sekaran, M.: Multiagent coordination with learning classifier systems. In: International Joint Conference on Artificial Intelligence, pp. 218–233. Springer, Berlin (1995)

    Google Scholar 

  34. Sen, S., Sekaran, M., Hale, J., et al.: Learning to coordinate without sharing information. In: Association for the Advancement of Artificial Intelligence, vol. 94, pp. 426–431 (1994)

    Google Scholar 

  35. Seredyński, F.: Task scheduling with use of classifier systems. In: AISB International Workshop on Evolutionary Computing, pp. 287–306. Springer, Berlin (1997)

    Google Scholar 

  36. Serendynski, F., Cichosz, P., Klebus, G.P.: Learning classifier systems in multi-agent environments. In: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 287–292. IET, London (1995)

    Google Scholar 

  37. Shao, J., Lin, H., Zhang, K.: Swarm robots reinforcement learning convergence accuracy-based learning classifier systems with gradient descent (XCS-GD). Neur. Comput. Appl. 25(2), 263–268 (2014)

    Article  Google Scholar 

  38. Smith, S.F.: A learning system based on genetic adaptive algorithms. Ph.D. Thesis, University of Pittsburgh (1980)

    Google Scholar 

  39. Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J.T., King, A.J.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interf. 11(100) (2014). https://browzine.com/articles/52614503

  40. Studley, M.E.: Learning classifier systems for multi-objective robot control. Ph.D. Thesis, University of the West of England, Bristol (2006)

    Google Scholar 

  41. Tesfatsion, L.: Introduction to the JEDC special issue on agent-based computational economics. J. Econ. Dyn. Control 25, 281–293 (2000)

    Article  Google Scholar 

  42. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  43. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995)

    Article  Google Scholar 

  44. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: International Workshop on Learning Classifier Systems, pp. 209–219. Springer, Berlin (1999)

    Google Scholar 

  45. Zhong, J., Hu, X., Zhang, J., Gu, M.: Comparison of performance between different selection strategies on simple genetic algorithms. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 1115–1121. IEEE, Piscataway (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Debie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debie, E. et al. (2021). Transparent Shepherding: A Rule-Based Learning Shepherd for Human Swarm Teaming. In: Abbass, H.A., Hunjet, R.A. (eds) Shepherding UxVs for Human-Swarm Teaming. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-60898-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60898-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60897-2

  • Online ISBN: 978-3-030-60898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics