Skip to main content

A Novel Decomposition-Based Multimodal Multi-objective Evolutionary Algorithm

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 916 Accesses

Abstract

Recently, multimodal multi-objective optimization problems (MMOPs) have got widespread attention, which brings difficulties and challenges to current multi-objective evolutionary algorithms in striking a good balance between diversity in decision space and objective space. This paper proposes a novel decomposition-based multimodal multi-objective evolutionary algorithm, which comprehensively considers diversity in both decision and objective spaces. In environmental selection, a decomposition approach is first used to divide union population into K subregions in objective space and the density-based clustering method is used to divide the union population into different clusters in decision space. Then, the nondominated solutions in the same cluster of each subregion are first selected, and then the remaining ones with good convergence in objective space are further selected to form a temporary population with more than N solutions (N is the population size). Next, temporary population is divided into K subregions by a decomposition approach. The pruning process, which deletes one most crowding solution in the most crowding subregion at each time, will be repeatedly run until there are N solutions left. The experimental results demonstrate that our proposed algorithm can better balance diversity in both decision and objective spaces on solving MMOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  2. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 7(3), 205–230 (1995)

    Google Scholar 

  3. Yue, C.T., Qu, B.Y., Yu, K.J., Liang, J.J., Li, X.D.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

    Article  Google Scholar 

  4. Liang, J.J., Qu, B.Y., Gong, D.W., Yue, C.T.: Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University (2019)

    Google Scholar 

  5. Ishibuchi, H., Peng, Y., Shang, K.: A scalable multimodal multi-objective test problem. In: 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, pp. 310–317. IEEE (2019)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Zhang, Q.F., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  8. Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_4

    Chapter  MATH  Google Scholar 

  9. Liang, J.J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2454–2461. IEEE, Vancouver, BC (2016)

    Google Scholar 

  10. Tanabe, R., Ishibuchi, H.: A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 249–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_20

    Chapter  Google Scholar 

  11. Yue, C., Qu, B., Liang, J.: A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22(6), 805–817 (2018)

    Article  Google Scholar 

  12. Hu, Y., et al.: A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm. Sci. China Inf. Sci. 62(7), 1–17 (2019). https://doi.org/10.1007/s11432-018-9754-6

    Article  MathSciNet  Google Scholar 

  13. Liu, Y., Yen, G.G., Gong, D.: A multi-modal multi-objective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4), 660–674 (2019)

    Article  Google Scholar 

  14. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  15. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery Data Mining, pp. 226–231 (1996)

    Google Scholar 

  16. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  17. Huang, V.L., Suganthan, P.N., Qin, K., Baskar, S.: Differential evolution with external archive and harmonic distance-based diversity measure. https://www.researchgate.net/pub-lication/228967624. Accessed 2008

  18. Bosman, P.A., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  19. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 12(1), 41–63 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, W., Li, Y., Luo, N. (2020). A Novel Decomposition-Based Multimodal Multi-objective Evolutionary Algorithm. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics