Skip to main content

Hypersonic Flow

  • Chapter
  • First Online:
Fundamentals of Modern Unsteady Aerodynamics
  • 717 Accesses

Abstract

There exist various criteria to be satisfied by the free stream Mach number \( M_{\infty } \), which makes the flow to be classified hypersonic when it is very high supersonic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, John D.: Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, New York (1989)

    Google Scholar 

  • Anderson, John D., M.J. Lewis, A.P. Kotari and S. Corda: Hypersonic Waveriders for Planetary Atmospheres, J. Spacecraft, V. 28, No 4, July-August 1991

    Google Scholar 

  • Ashley, H. and G. Zartarian: Piston Theory-A New Aerodynamic Tool for the Aeroelastician, Journal of Aeronautical Sciences, Dec. 1956

    Google Scholar 

  • Aupoix, B., C. Eldem and J. Cousteix: Couche Limite Laminare Hypersonique Etude Parametriqeu de la Representation des Effects de Gaz Reel, Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CP-428, November, 1987

    Google Scholar 

  • Bertin, John, J.: Hypersonic Aerothermodynamics, AIAA Education Series, Washington, DC, 1994

    Google Scholar 

  • Billig, F.S.: Shock-Wave Shapes Around Spherical and Cylindirical Nosed Bodies, Journal of Spacecraft and Rockets, V. 4, No 6, June 1967

    Google Scholar 

  • Bohachevski, Ihor O. and R.E. Mates: A Direct Method for Calculation of the Flow about an Axisymmetric Blunt Body at Angle of Attack, AIAA J., pp 776–782, May 1966

    Google Scholar 

  • Bowcutt, Kevin G., J.D. Anderson and D. Capriotti: Numerical Optimization of Conical Flow Waveriders Including Detailed Viscous Effects, Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CP-428, November, 1987

    Google Scholar 

  • Denbigh, Kenneth: The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Edwards, Thomas A. And J. Flores: Computational Fluid Dynamics Nose-to-Tail Capability: Hypersonic Unsteady Navier-Stokes Code Validation, J. Spacecraft, V. 27, No 2, March-April 1990

    Google Scholar 

  • Hall, Gorden J., A.Q. Eschenroeder and P.V. Marrone, Blunt-Nose Inviscid Airflow with Coupled Nonequilibrium Process, Journal of the Aerospace Sciences, Sept. 1962

    Google Scholar 

  • Hayes, Wallace D. and R.F. Probstein: Hypersonic Flow Theory Vol.I, 2nd ed., Academic Press, New York, 1966

    Google Scholar 

  • Hoffman, Joe D.: Numerical Methods for Engineers and Scientists. McGraw-Hill, New York (1992)

    MATH  Google Scholar 

  • Jones, Kevin D. And F.C. Dougherty: Numerical Simulation of High-Speed Flows About Waveriders with Sharp Leading Edges, Journal of Spacecraft and Rockets, V.29, N. 5, September-October 1992

    Google Scholar 

  • Kutler, Paul and H. Lomax, Shock Capturing Finite-Difference Approach to Supersonic Flows, Journal of Spacecraft, V.8, No 12, December 1971

    Google Scholar 

  • Kutler, Paul, R.F Warming and H. Lomax: Computation of Space Shuttle Flow Fields Using Noncenterd Finite-Difference Schemes, AIAA J., V.11, No 2, February, 1973

    Google Scholar 

  • Lee, John F., F.W. Sears and D.L. Turcotte: Statistical Thermodynamics, Addison- Wesley, Reading Mass., 1973

    Google Scholar 

  • Lewis, Mark J. And A.D. McRonald, Design of Hypersonic Waveriders for Aeroassisted Interplanetory Trajectories, Journal of Spacecraft and Rockets, V. 29 N. 5, September-October 1992

    Google Scholar 

  • Lighthill, M.J.: Oscillating Airfoils at High Mach Numbers, Journal of Aeronautical Sciences, June 1953

    Google Scholar 

  • Marvin, J.G., C.G. Hortsman, M.W. Rubesin, T.J. Coakley, M.I. Mussoy: An Experimental and Numerical Investigation of Shock-Wave Induced Turbulent Boundary Layer Separation at Hypersonic Speeds, Flow Separation, AGARD-CP- 168, November 1975

    Google Scholar 

  • Maslen, S.H.: Inviscid Hypersonic Flow Past Smooth Symmetric Bodies, AIAA J, V. 2, No 6, June 1964

    Google Scholar 

  • Molina, R.C. and J.P. Huot: A One-Point Integration Finite Element Solver for the Fast Solution of the Compressible Euler, Equations, Computer Methods in Applied Mechanics and Engineering, 95, 1992

    Google Scholar 

  • Neumann, Richard D.: Special Topics in Hypersonic Flow, in Aerodynamic Problems of Hypersonic Vehicles, AGARD-LS 42, 1972

    Google Scholar 

  • Nonweiler, T.R.F.: Aerodynamic Problems of Manned Space Vehicles, Journal of the Royal Aeronautical Society, September 1959

    Google Scholar 

  • Oksuzoglu, Hakan: Compressible Boundary Layers, Graduation Thesis. Supervised by U. Gulcat, Faculty of Aeronautics and Astronautics, ITU (1986)

    Google Scholar 

  • Pierce, Alvin G.: Unsteady Hypersonic Flows About Thin Lifting Surfaces. Lecture Notes, Georgia Institute of Technology (1978)

    Google Scholar 

  • Rault, Didier F.G.:Aerodynamic Characteristics of a Hypersonic Viscous Optimized Waverider at High Altitudes, Journal of Spacecraft and Rockets, V. 31 N. 5, September-October 1994

    Google Scholar 

  • Riedelbauch, S., W. Wetzel, M. Kordulla, H. Oertel Jr., On the Numerical Simulation of the Hypersonic Flow in Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CP 428, November 1987

    Google Scholar 

  • Shapiro, Ascher H.: The Dynamics and Thermodynamics of Compressible Fluid Flow I. The Ronald Press Company, New York (1953)

    Google Scholar 

  • Talbot, L., T. Koga and P.M. Sharman, Hypersonic Viscous Flow Over Slender Cones, NACA TN 4327, September 1958

    Google Scholar 

  • Takashima, Naruhisa and M.J. Lewis: Navier-Stokes Computations of a Viscous Optimized Waverider, Journal of Spacecraft and Rockets, V. 31, N. 3, May-June 1994

    Google Scholar 

  • Van Driest, E.R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using The Crocco Method, NACA TN 2579, January 1952

    Google Scholar 

  • Van Dyke, M.D.: A Study of Hypersonic Small Disturbance Theory, NACA Report 1194, 1954

    Google Scholar 

  • Van Dyke, M.D.: The supersonic Blunt Body Problem-Review and Extensions, Journal of Aeronautical Sciences, 1958

    Google Scholar 

  • Vincenti, Walter G.: And C:H: Kruger. Introduction to Physical Gasdynamics, Wiley, New York, Jr (1965)

    Google Scholar 

  • White, Frank M.: Viscous Fluid Flow, McGraw-Hill, 1991

    Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: vol. 3. Fluid Mechanics, Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülgen GÜlçat .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

GÜlçat, Ü. (2021). Hypersonic Flow. In: Fundamentals of Modern Unsteady Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-60777-7_7

Download citation

Publish with us

Policies and ethics