Skip to main content

Chemicals for the Management of Paddy Blast Disease

  • Chapter
  • First Online:
Blast Disease of Cereal Crops

Abstract

Blast disease of rice caused by Magnaporthe oryzae has remained to be the biggest threat for rice production across the world. Several strategies such as cultural, biological, host plant resistance, chemical and integration of different strategies have been developed to manage this devastating disease in farm situations. Poor bio-efficacy of biocontrol agents, limited availability of resistant cultivars in desired varieties and continuous evolution of pathotypes have forced the rice farmers to depend much on fungicides for minimising the yield losses caused by blast disease. Several molecules with the diverse mode of action have been developed and registered against blast disease since the 1960s, and the work is being carried out continuously in search of better molecules. Compared to the fungicides developed in the 1970s, present-day fungicides are better in terms of higher efficacy and lower environmental impacts. In this chapter, we attempt to summarise all the chemicals developed and recommended for the management of paddy blast. This chapter also includes some of the novel chemicals which interfere with the infection process without causing any toxicity to the pathogen, and also those that trigger resistances in rice plants against blast disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araki F, Miyagi Y. Effect of isoprothiolane on the infection process of Pyricularia oryzae. Ann Phytopathol Soc Jpn. 1976;42:401–6.

    Article  Google Scholar 

  • Arie T, Nakashita H. Plant activator. Shokubutsuboeki. Plant Prot. 2007;61(10):531–6.

    Google Scholar 

  • Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol. 1986;24:411–51.

    Article  CAS  Google Scholar 

  • Brent KJ, Hollomon DW. Fungicide resistance in crop pathogens: how can it be managed. Crop Life International; 2007. p. 1–55.

    Google Scholar 

  • Chaudhary B. Effect of blast disease on rice yield. Nepal Agric Res J. 1999;3:8–13.

    Google Scholar 

  • Chaudhary B, Sah DN. Effect of promising rice genotypes on leaf blast disease progression. Nepal Agric Res J. 1997;1:27–31.

    Google Scholar 

  • Chen Y, Yang X, Yuan SK, Li YF, Zhang AF, Yao J, Gao TC. Effect of azoxystrobin and kresoxim-methyl on rice blast and rice grain yield in China. Ann Appl Biol. 2015;166:434–43.

    Article  CAS  Google Scholar 

  • Chethana BS. A new combination fungicide for the management of sheath blight and neck blast diseases of paddy. Int J Pure Appl Biosci. 2018;6(4):651–5.

    Article  Google Scholar 

  • Chida T, Sisler HD. Restoration of appressorial penetration ability with melanin precursors in Pyricularia oryzae treated with antipenetrants and melanin-deficient mutants. J Pestic Sci. 1987a;12:49–55.

    Article  CAS  Google Scholar 

  • Chida T, Sisler HD. Effect of inhibitors of melanin biosynthesis on appressorial penetration and reductive reactions in Pyricularia oryzae and Pyricularia grisea. Pestic Biochem Physiol. 1987b;29:244–51.

    Article  CAS  Google Scholar 

  • Froyd JD, Paget CJ, Guse LR, Dreikorn BA, Pafford JL. Tricyclazole: a new systemic fungicide for control of Pyricularia oryzae on rice. Phytopathology. 1976;66(1):135–1.

    Google Scholar 

  • Gaikwad AP, Balgude YS. Metominostrobin, a novel strobilurin fungicide for managing rice blast. J Rice Res. 2016;9(1):50–2.

    Google Scholar 

  • Georgopoulos SG, Ziogas BN. Principles and methods for control of plant diseases. Athens; 1992. 236 p.

    Google Scholar 

  • Groth DE. Azoxystrobin rate and timing effects on rice head blast incidence and rice grain and milling yields. Plant Dis. 2006;90:1055–8.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara H, Ezaki R, Hamada T, Psuda M, Ebihara K. Development of a novel fungicide, tolprocarb. J Pestic Sci. 2019;208–213.

    Google Scholar 

  • Hamada T, Asanagi M, Satozawa T, Araki N, Banba S, Higashimura N, Akase T, Hirase K. Action mechanism of the novel rice blast fungicide tolprocarb distinct from that of conventional melanin biosynthesis inhibitors. J Pestic Sci. 2014;39(3):152–8.

    Article  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach HD, Money JP. Penetration of hard substrate by a fungus employing enormous turgor pressure. Proc Natl Acad Sci U S A. 1991;88:11281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiyama T. Studies on the preventive effect of kasugamycin on rice blast. J Antibiot. 1965;18:115–9.

    CAS  Google Scholar 

  • Junges CM, Peltzer PM, Lajmanovich RC, Attademo AM, Zenklusen MC, Basso A. Toxicity of the fungicide trifloxystrobin on tadpoles and its effect on fish-tadpole interaction. Chemosphere. 2012;87:1348–54.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri M, Uesugi Y. Similarities between fungicidal action of isoprothiolane and organophosphorus thiolate fungicides. Phytopathology. 1977;67:1415–7.

    Article  Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, Van Loon LC. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signalling at the site of application. Mol Plant-Microbe Interact. 1999;12:720–7.

    Article  CAS  PubMed  Google Scholar 

  • Kodama O, Yamada H, Akatsuka T. Kitazin P, inhibitor of phosphatidylcholine biosynthesis in Pyricularia oryzae. Agric Biol Chem. 1979;43:1719–25.

    CAS  Google Scholar 

  • Kuck KH, Stenzel K, Vors JP. Sterol biosynthesis inhibitors. In: Kramer W, Schirmer U, Jeschke P, Witschel M, editors. Modern crop protection compounds. 2nd ed. Weinheim: Wiley-VCH; 2012. p. 761–806.

    Chapter  Google Scholar 

  • Kumar PMK, Veerabhadraswamy AL. Appraise a combination of fungicides against blast and sheath blight diseases of paddy (Oryza sativa L.). J Exp Biol Agril Sci. 2014;2(1):49–57.

    Google Scholar 

  • Kurahashi Y, Hattori TLT, Kagabu S, Pontzen R. Mode of action of the novel rice blast fungicide KTU 3616. Pestic Sci. 1996;47(2):199–200.

    Article  CAS  Google Scholar 

  • Kurahashi Y, Sakawa S, Kimboraund T, Kagabu S. Biological activity of carpropamid (KTU 3616): a new fungicide for rice blast disease. J Pestic Sci. 1997;22:108–12.

    Article  CAS  Google Scholar 

  • Liu L, Jiang C, Wu ZQ, Gong YX, Wang GX. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicol Environ Saf. 2013;98:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Manandhar HK. Seed treatment against rice leaf blast. Nepal J Agric Sci. 1984;15:189.

    Google Scholar 

  • Manandhar HK, Thapa BJ, Amatya P. Efficacy of various fungicides on the control of rice blast disease. J Inst Agric Anim Sci. 1985;6:21–9.

    Google Scholar 

  • Matsuura K, Ishida Y, Kuragano T, Konishi K. Development of a new fungicide, ferimzone. J. Pestic. Sci. 1994;19:325–327.

    Google Scholar 

  • Mariappan V, Rajeswari E, Kamalakannan A. Management of rice blast, Pyricularia oryzae by using neem (Azadirachta indica) and other plant products. In: Mariappan V, editor. Neem for the management of crop diseases. New Delhi: Associated Publishing Co.; 1995. p. 3–10.

    Google Scholar 

  • Mashiko M, Kataoka T, Ichisei M, Shinkawa M. Development of a fungicide for rice: metominostrobin. J Pestic Sci. 2001;26(2):203–14.

    Article  Google Scholar 

  • Mbodi Y, Gaye S, Diaw S. The role of tricyclazole in rice protection against blast and cultivar improvement. Parasitica. 1987;43:187–98.

    Google Scholar 

  • Minami E, Ando I. Analysis of blast disease resistance induced by probenazole in rice. J Pestic Sci. 1994;19:79–83.

    Article  CAS  Google Scholar 

  • Misato T, Ishii I, Asakawa M, Okimoto Y, Fukunaga K. Antibiotics as protectant fungicides against rice blast. Jpn J Phytopathol. 1959;24(5):302–6.

    Article  CAS  Google Scholar 

  • Miura H, Ito H, Takahashi S. Occurrence of resistant strains of Pyricularia oryzae to kasugamycin as a cause of the diminished fungicide activity to rice blast. Ann Phytopathol Soc Jpn. 1975;41:415–7.

    Article  Google Scholar 

  • Mizutani A, Miki N, Yukioka H, Tamura H, Masuko M. A possible mechanism of control of rice blast disease by a novel alkoxyiminoacetamide fungicide, SSFI26. Phytopathology. 1996;86:295–300.

    Article  CAS  Google Scholar 

  • Moletti M, Giudici ML, Nipoti E, Villa B. Chemical control trials against rice blast in Italy. Inf Fitopatol. 1988;38:41–7.

    Google Scholar 

  • Morton V, Staub T. A short history of fungicides. Online. APSnet Features. 2008. https://doi.org/10.1094/APSnetFeature-2008-0308.

  • Mueller DS. “Fungicides: triazoles”. Integrated Crop Management News. 2006. p. 1274. http://lib.dr.iastate.edu/cropnews/1274.

  • Naidu VD, Reddy GV. Control of blast (BI) in main field and nursery with some new fungicides. R.P.P. 1989;69:209.

    Google Scholar 

  • Nakashita H, Yoshioka K, Yasuda M, Nitta T, Arai Y, Yoshida S, Yamaguchi I. Probenazole induces systemic acquired resistance in tobacco thorough salicylic acid accumulation. Physiol Mol Plant Pathol. 2002;61:197–203.

    Article  CAS  Google Scholar 

  • Okuno T, Furusawa I, Matsuura K, Shishiyama J. Mode of action of ferimzone (TF-164), a novel systemic fungicide for rice diseases: effect on the general metabolism of Pyricularia oryzae. Ann Phytopathol Soc Jpn. 1989;55:281–9.

    Article  CAS  Google Scholar 

  • Ou SH. Rice diseases: International Rice Research Institute. Manila, Philippines; 1985.

    Google Scholar 

  • Pal AK, Gajjar DU, Vasavada AR. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol. 2013;52(1):10–8.

    Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu AS, Filippi MC. Seed treatment with pyroquilon for the control of leaf blast in Brazilian upland rice. Int J Pest Manag. 1993;39(3):347–53.

    Article  CAS  Google Scholar 

  • Pramesh D, Muniraju KM, Guruprasad GS, Mahantashivayogayya K, Reddy BGM, Gowdar SB, Chethana BS. Bio-efficacy of a combination fungicide against blast and sheath blight diseases of paddy. J Exp Agril Int. 2016a:1–8.

    Google Scholar 

  • Pramesh D, Nataraj K, Guruprasad GS, Mahantashivayogayya K, Reddy BGM. Evaluation of a new strobilurin group of fungicide for the management of blast disease of paddy. J Exp Agric Int. 2016b:1–6.

    Google Scholar 

  • Raji P, Louis V. Isoprothiolane—a new fungicide for the management of rice blast. ORYZA Int J Rice. 2007;44(4):366–7.

    Google Scholar 

  • Sah DN, Karki PB. Efficacy of seed treatment and crop management in controlling leaf blast disease of rice. In: Rice Technical Working Group Meeting held at Parwanipur, Nepal. 1988. p. 6–8.

    Google Scholar 

  • Sakuma H, Araki Y, Tanaka K, Kinbara T, Imanishi K, Shigyo T, Kuchii Y, Ogawa M, Ishikawa R, Sawada H. Studies on a Novel Fungicide Isotianil (Routine® )–1; Biological Properties on Rice Blast and Several Diseases. Jpn J Phytopathol. 2008;74:267.

    Google Scholar 

  • Sauter H, Ammermann E, Benoit R, Brand S, Gold RE, Grammenos W, Koehle H, Lorenz G, Muller B, Rohl F, Schirmer U, Speakman JB, Wenderoth B, Wingert H. Mitochondrial respiration as a target for antifungals: lessons learned from research on strobilurins. In: Dixon GK, Copping LG, Hollomon DW, editors. Antifungal agents-discovery and mode of action. Oxford: BIOS; 1995. p. 173–91.

    Google Scholar 

  • Shen YF, Liu L, Gong YX, Zhu B, Liu GL, Wang GX. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris. Environ Toxicol Pharmacol. 2014;37:1040–7.

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Mohan C, Pannu PS. Bio-efficacy of different fungicides in managing blast of rice caused by Pyricularia grisea. Plant Dis Res. 2014;29(1):16–20.

    Google Scholar 

  • Singh HS, Kaushik SS, Singh CM, Negi RS. Efficacy of different fungicides against rice blast caused by Pyricularia oryzae (Cav.) under Field Condition in Satna District of Madhya Pradesh. Int J Curr Microbiol App Sci. 2019;8(6):63–9.

    Article  CAS  Google Scholar 

  • Suzuki F, Yamaguchi J, Koba A, Nakajima T, Arai M. Changes in fungicide resistance frequency and population structure of Pyricularia oryzae after discontinuance of MBI-D fungicides. Plant Dis. 2010;94:329–34.

    Article  CAS  PubMed  Google Scholar 

  • Taninaka K, Kurono H, Hara T, Murata K. Rice blast controlling activities of bis (alkoxycarbonyl) ketene dithioacetals and their related compounds. J Pestic Sci. 1976;1(2):115–22.

    Article  CAS  Google Scholar 

  • Tokousbalides MC, Sisler HD. Effect of tricyclazole on growth and secondary metabolism in Pyricularia oryzae. Pestic Biochem Physiol. 1978;8:26–32.

    Article  CAS  Google Scholar 

  • Tokuda T, Nishiki M, Hoshi H, Shinoda K, Ishida M, Misato T. Metabolic fate of fthalide (4,5,6,7-tetrachlorophthalide) in compost. J Pestic Sci. 1976;1:283–94.

    Article  CAS  Google Scholar 

  • Tsubata K, Kuroda K, Yamamoto Y, Yasokawa N. Development of a novel plant activator for rice diseases, tiadinil. J Pestic Sci. 2006;31(2):174–81.

    Article  Google Scholar 

  • Uesugi Y. Fungal choline biosynthesis—a target for controlling rice blast. Pestic Outlook. 2001;12(1):26–7.

    Article  CAS  Google Scholar 

  • Umetani K, Hakuno F, Nishimura A, Yamamoto Y, Hirooka T. Studies on NNF-9850 (Tiadinil, V-GET), a novel fungicide. Abst. PSJ Ann. Meeting. 2003 (in Japanese).

    Google Scholar 

  • Umezawa H, Hamada M, Suhara Y, Hashimoto T, Ikekawa T. Kasugamycin, a new antibiotic. Antimicrob Agents Chemother. 1965;5:753–7.

    CAS  PubMed  Google Scholar 

  • Watanabe T, Igarashi H, Matsumoto K, Seki S, Mase S, Sekizawa Y. The characteristics of probenazole (Oryzemate) for the control of rice blast. J Pestic Sci. 1977;2:291–6.

    Article  CAS  Google Scholar 

  • Wheeler MH, Bell AA. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol. 1998;2:338–87.

    Article  Google Scholar 

  • Woloshuk CP, Sisler HD, Tokousbalides MC, Dutky SR. Melanin biosynthesis in Pyricularia oryzae: site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants. Pestic Biochem Physiol. 1980;14:256–64.

    Article  CAS  Google Scholar 

  • Woloshuk CP, Sisler HD, Vigil EL. Action of the antipenetrant, tricyclazole, on appressoria of Pyricularia oryzae. Physiol Plant Pathol. 1983;22:245–59.

    Article  CAS  Google Scholar 

  • Yamaguchi T. Development of rice blast control techniques in Japan. Jpn Pestic Inform. 1974;18:5–9.

    Google Scholar 

  • Yamaguchi I. Activators for systemic acquired resistance. In: Fungicidal activity chemical and biological approaches to plant protection. 1998. p. 193–219.

    Google Scholar 

  • Yamaguchi I. Overview on the chemical control of rice blast disease. In: Rice blast: interaction with rice and control. Dordrecht: Springer; 2004. p. 1–13.

    Google Scholar 

  • Yamaguchi I, Kubo Y. Target sites of melanin biosynthesis inhibitors. Target sites of fungicide action. 1992. p. 101–18.

    Google Scholar 

  • Yamaguchi I, Sekido S, Misato T. The effect of non-fungicidal anti-blast chemicals on the melanin biosynthesis and infection by Pyricularia oryzae. J Pestic Sci. 1982;7:523–9.

    Article  CAS  Google Scholar 

  • Yoshioka K, Nakashita H, Klessig D, Yamaguchi I. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 2001;25:149–57.

    Article  CAS  PubMed  Google Scholar 

  • Yukioka M, Hatayama T, Morisawa S. Affinity labelling of the ribonucleic acid component adjacent to the peptidyl recognition center of peptidyl transferase in Escherichia coli ribosomes. Biochim Biophys Acta. 1975;390:192–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amoghavarsha, C. et al. (2021). Chemicals for the Management of Paddy Blast Disease. In: Nayaka, S.C., Hosahatti, R., Prakash, G., Satyavathi, C.T., Sharma, R. (eds) Blast Disease of Cereal Crops. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60585-8_5

Download citation

Publish with us

Policies and ethics