Skip to main content

Feature Selection in Neural Network Solution of Inverse Problem Based on Integration of Optical Spectroscopic Methods

  • Conference paper
  • First Online:
Book cover Advances in Neural Computation, Machine Learning, and Cognitive Research IV (NEUROINFORMATICS 2020)

Abstract

This study considers a neural network solution to the inverse problem based on the integration of optical spectroscopy methods for determining ion concentrations in aqueous solutions. The effect of integration of physical methods is studied using the selection of significant input features. The previously formulated thesis is confirmed that if the integrated methods differ much by their accuracy, then the integration of these methods is ineffective. Use of joint selection of significant input features may only slightly improve the quality of solution in a limited number of situations. Among the tested methods of feature selection, embedded method based on the analysis of weights of an already trained neural network (multi-layer perceptron) gives better results than filter methods with selection based on standard deviation, cross-correlation, or cross-entropy, at the expense of some additional computation. Selection of the significant input features allows improving the quality of the ANN solution relative to the solution obtained on the full sets of features. The improvement is the greater, the worse is the initial solution.

This study has been performed at the expense of the grant of Russian Science Foundation (project no. 19-11-00333).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, R., Gautam, N., Mishra, A., Gupta, R.: Heavy metals and living systems. Indian J. Pharmacol. 43(3), 246–254 (2011)

    Article  Google Scholar 

  2. Koedrith, P., Kim, H.L., Weon, J.I., Seo, Y.R.: Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 216, 587–598 (2013)

    Article  Google Scholar 

  3. Morais, S., de Costa, F.G., de Lourdes Pereira, M., Heavy metals and human health. Environ. Health Emerg. Issues Pract. 10, 227–246 (2012)

    Google Scholar 

  4. Bradl, H.: Heavy Metals in the Environment: Origin, Interaction and Remediation, vol. 6, Elsevier (2005)

    Google Scholar 

  5. He, Z.L., Yang, X.E., Stoffella, P.J.: Trace elements in agroecosystems and impacts on the environment. J. Trace Elements Med. Biol. 19(2–3), 125–140 (2005)

    Google Scholar 

  6. Fa, Y., Yu, Y., Li, F., et al.: Simultaneous detection of anions and cations in mineral water by two-dimensional ion chromatography. J. Chromatogr. A 1554, 123–127 (2018)

    Article  Google Scholar 

  7. Sarzanini, C., Bruzzoniti, M.C.: Metal species determination by ion chromatography. Trends Anal. Chem. 20(6–7), 304–310 (2001)

    Article  Google Scholar 

  8. Maurya, V.K., Singh, R.P., Prasad, L.B.: Comparative evaluation of trace heavy metal ions in water sample using complexes of dithioligands by flame atomic absorption spectrometry. Orient. J. Chem. 34(1), 100–109 (2018)

    Article  Google Scholar 

  9. Kogan, V.T., Pavlov, A.K., Chichagov, Y., et al.: Mobile mass spectrometer for determination of heavy metals in sea water: numerical simulation and experimental verification. Tech. Phys. 52(12), 1604–1610 (2007)

    Article  Google Scholar 

  10. Farghaly, O.A., Hameed, R.A., Abu-Nawwas, A.A.H.: Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci. 9(1), 3287–3318 (2014)

    Google Scholar 

  11. Kauffmann, T.H., Fontana, M.D.: Inorganic salts diluted in water probed by Raman spectrometry: data process sing and performance evaluation. Sens. Actuators B 209, 154–161 (2015)

    Article  Google Scholar 

  12. Crompton, T.R.: Determination of Anions in Natural and Treated Waters, 828 p. Taylor & Francis (2002)

    Google Scholar 

  13. Kulkarni, S., Dhokpande, S., Kaware, J.: A review on spectrophotometric determination of heavy metals with emphasis on cadmium and nickel determination By UV spectrophotometry. Int. J. Adv. Eng. Res. Sci. (IJAERS) 2(9), 1836–1839 (2015)

    Google Scholar 

  14. Burikov, S.A., Dolenko, T.A., Velikotnyi, P.A., Sugonyaev, A.V., Fadeev, V.V.: The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water. Opt. Spectrosc. 98(2), 235–239 (2005)

    Article  Google Scholar 

  15. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Efitorov, A.O., Dolenko, S.A., Dolenko, T.A., et al.: Use of adaptive methods to solve the inverse problem of determination of ionic composition of multi-component solutions. Opt. Memory Neural Networks (Inf. Opt.) 27(2), 89–99 (2018)

    Article  Google Scholar 

  17. Sarmanova, O.E., Laptinskiy, K.A., Burikov, S.A., et al.: Determination of heavy metal ions concentration in aqueous solutions using adaptive data analysis methods. In: Proceedings of the SPIE, vol. 11354, art. 113540L (2020)

    Google Scholar 

  18. Isaev, I., Trifonov, N., Sarmanova, O., et al.: Joint application of Raman and optical absorption spectroscopy to determine concentrations of heavy metal ions in water using artificial neural networks. In: Proceedings of the SPIE, vol. 11458, art.114580R (2020)

    Google Scholar 

  19. Gushchin, K.A., Burikov, S.A., Dolenko, T.A., et al.: Data dimensionality reduction and evaluation of clusterization quality in the problems of analysis of composition of multi-component solutions. Opt. Mem. Neural Networks (Inf. Opt.) 24(3), 218–224 (2015)

    Google Scholar 

  20. Efitorov, A., Burikov, S., Dolenko, T., et al.: Significant feature selection in neural network solution of an inverse problem in spectroscopy. Procedia Comput. Sci. 66, 93–102 (2015)

    Article  Google Scholar 

  21. Dolenko, S., Isaev, I., Obornev, E., et al.: Study of influence of parameter grouping on the error of neural network solution of the inverse problem of electrical prospecting. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383. Springer, Heidelberg (2013)

    Google Scholar 

  22. Isaev, I., Obornev, E., Obornev, I., et al.: Increase of the resistance to noise in data for neural network solution of the inverse problem of magnetotellurics with group determination of parameters. In: Villa, A., Masulli, P., Pons Rivero, A. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 502–509. Springer, Cham (2016)

    Google Scholar 

  23. Isaev, I., Burikov, S., Dolenko, T., Laptinskiy, K., Vervald, A., Dolenko, S.: Joint application of group determination of parameters and of training with noise addition to improve the resilience of the neural network solution of the inverse problem in spectroscopy to noise in data. In: Kurkova, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 435–444. Springer, Cham (2018)

    Google Scholar 

  24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  25. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 1–45 (2017)

    Article  Google Scholar 

  26. Cibas, T., Soulié, F.F., Gallinari, P., Raudys, S.: Variable selection with neural networks. Neurocomputing 12(2–3), 223–248 (1996)

    Article  Google Scholar 

  27. Verikas, A., Bacauskiene, M.: Feature selection with neural networks. Pattern Recogn. Lett. 23(11), 1323–1335 (2002)

    Article  Google Scholar 

  28. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  29. Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural networks. Neurocomputing 241, 81–89 (2017)

    Article  Google Scholar 

  30. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modell. 160(3), 249–264 (2003)

    Article  Google Scholar 

  31. Pérez-Uribe, A.: Relevance metrics to reduce input dimensions in artificial neural networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 39–48. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Isaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isaev, I., Sarmanova, O., Burikov, S., Dolenko, T., Laptinskiy, K., Dolenko, S. (2021). Feature Selection in Neural Network Solution of Inverse Problem Based on Integration of Optical Spectroscopic Methods. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research IV. NEUROINFORMATICS 2020. Studies in Computational Intelligence, vol 925. Springer, Cham. https://doi.org/10.1007/978-3-030-60577-3_27

Download citation

Publish with us

Policies and ethics