Kofler, C., Spöck, G., Muhr, R.: Classifying defects in topography images of silicon wafers. In: Winter Simulation Conference (WSC), pp. 3646–3657 (2017)
Google Scholar
Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. Lect. Notes Comput. Sci., vol. 8887, pp. 668 –677 (2014)
Google Scholar
Faghih-Roohi, S., et al.: Deep convolutional neural networks for detection of rail surface defects. In: International Joint Conference Neural Networks (IJCNN), pp. 2584–2589 (2016)
Google Scholar
Maestro-Watson, D., Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N.: Deflectometric data segmentation for surface inspection: a fully convolutional neural network approach. J. Electron. Imaging 29(4), 041007 (2020)
CrossRef
Google Scholar
Li, S., Zhao, X., Zhou G.: Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Comput. Aided Civil Infrastruct. Eng., 34(7), 616–634 (2019)
Google Scholar
Yudin, D., Naumov, A., Dolzhenko, A., Patrakova, E.: Software for roof defects recognition on aerial photographs. J. Phys: Conf. Ser. 1015(3), 032152 (2018)
Google Scholar
Computer Vision Annotation Tool (CVAT). https://github.com/opencv/cvat. Accessed 10 May 2020
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., Arbel, T., Carneiro, G., Syeda-Mahmood, T., Tavares, J.M.R.S., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., Nascimento, J.C., Cardoso, J.S., Belagiannis, V., Lu, Z. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28
CrossRef
Google Scholar
Yudin, D.A., Skrynnik, A., Krishtopik, A., Belkin, I., Panov, A.I.: Object detection with deep neural networks for reinforcement learning in the task of autonomous vehicles path planning at the intersection. Opt. Memory Neural Networks 28(4), 283–295 (2019). https://doi.org/10.3103/S1060992X19040118
CrossRef
Google Scholar
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
CrossRef
Google Scholar
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. ArXiv, abs/1909.11065 (2019)
Google Scholar
Chollet, F.: Xception: deep learning with depthwise separable convolutions. CVPR 2017, arXiv:1610.02357 (2017)
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Google Scholar