Skip to main content

Magnetic Self-Assembling of Spherical Co Nanoparticles Used as Building Blocks: Syntheses, Properties and Theory

  • Chapter
  • First Online:
New Trends in Nanoparticle Magnetism

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 308))

Abstract

In this chapter, we show that thanks to the use of micellar and organometallic approaches, one can favor the growth of uniform spherical Co NPs with controlled surface passivation (dodecanoic acid or oleylamine), tunable size (from around 4 to 9 nm) and tunable nanocrystallinity (from fcc to hcp structure). As a result of the balance between van der Waals attractions between the metallic NPs, magnetic interactions between the magnetic NPs and solvent-mediated interactions between ligands, these uniform colloidal NPs can be used as building units to form a full set of assemblies which morphology depends on the deposition strategy, involving solvent evaporation. In the case of spontaneous self-assembling of magnetic NPs, compact hexagonal 2D arrays and 3D superlattices called supercrystals can form. In the latter case, either face-centered cubic supercrystalline films or single colloidal crystals can be obtained. Mesostructures of hexagonally ordered columns, labyrinths and void structures can result from assisted self-assembling, induced by the application of an external magnetic field. In highly ordered superlattices, individual NPs act as “artificial atoms” and occupy the lattice sites to form repetitive, periodic “artificial planes". From a fundamental point of view, these artificial solids constitute good models for investigating crystallization behavior. Resulting from collective interactions between neighboring NPs, they exhibit novel magnetic properties. The magnitude of these interactions, and then, the magnetic properties, can be tuned by various parameters including (1) the (crystallographic) nature of the magnetic NP, (2) the NP size, (3) the nature of the coating agent, (4) the nature of the solvent, (5) the evaporation rate and (6) if appropriate, the application of an external field during the solvent evaporation. On the one hand, simulations based on a flory-type solvation theory using Hansen solubility colloidal parameters allow to predict the cobalt NP size. On the other hand, Monte Carlo simulations and free energy theories are able to predict the size and type of patterns appearing during the evaporation of a solution of magnetic NPs under a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Lisiecki, From the Co nanocrystals to their self-organizations: towards ferromagnetism at room temperature. Acta Phys. Pol. A 121, 426–433 (2012)

    Article  ADS  Google Scholar 

  2. A.M. Kalsin, M. Fialkowski, M. Paszewski, S.K. Smoukov, K.J.M. Bishop, B.A. Grzybowski, Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312(80), 420–424 (2006)

    Google Scholar 

  3. M.A. Boles, M. Engel, D.V. Talapin, Self-assembly of colloidal nanocrystals: from intricate structures to functional materials—chemical reviews (ACS Publications). Chem. Rev. 116, 11220–11289 (2016)

    Article  Google Scholar 

  4. A. Demortière, C. Petit, First synthesis by liquid−liquid phase transfer of magnetic CoxPt100-X nanoalloys. Langmuir 23, 8575–8584 (2007)

    Article  Google Scholar 

  5. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(80), 1989–1992 (2000)

    Google Scholar 

  6. I. Lisiecki, P.-A. Albouy, M.-P. Pileni, Face-centered-cubic “supracrystals” of cobalt nanocrystals. Adv. Mater. 15, 712–716 (2003)

    Google Scholar 

  7. C. Salzemann, J. Richardi, I. Lisiecki, J.-J. Weis, M.P. Pileni, Mesoscopic void structures in cobalt nanocrystal films formed from drying concentrated colloidal solutions. Phys. Rev. Lett. 102, 144502 (2009)

    Article  ADS  Google Scholar 

  8. M. Gauvin, N. Yang, E. Barthel, I. Arfaoui, J. Yang, P.A. Albouy, M.P. Pileni, Morphology, nanocrystallinity, and elastic properties of single domain ε co supracrystals. J. Phys. Chem. C 119, 7483–7490 (2015)

    Article  Google Scholar 

  9. J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.R. Kagan, C.B. Murray, Synergism in binary nanocrystal superlattices leads to enhanced P-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 6, 115–121 (2007)

    Article  ADS  Google Scholar 

  10. A. Courty, I. Lisiecki, M.P. Pileni, Vibration of self-organized silver nanocrystals. J. Chem. Phys. 116, 8074–8078 (2002)

    Google Scholar 

  11. D. Parker, I. Lisiecki, C. Salzemann, M. Pileni, M. Curie, Emergence of new collective properties of cobalt nanocrystals ordered in Fcc supracrystals : II. Magn. Invest. 12632–12638 (2007)

    Google Scholar 

  12. D. Dinega, M. Bawendi, A solution‐phase chemical approach to a new crystal structure of cobalt. Angew. Chemie Int. … 1788–1791 (1999)

    Google Scholar 

  13. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(80), 2115–2117 (2001)

    Google Scholar 

  14. C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley, C.R. Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001)

    Google Scholar 

  15. J.I.L. Park, N.J. Kang, Y.W. Jun, S.J. Oh, H.C. Ri, J. Cheon, Superlattice and magnetism directed by the size and shape of nanocrystals. ChemPhysChem 3, 543–547 (2002)

    Google Scholar 

  16. S. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J. Appl. Phys. 85, 4325 (1999)

    Article  ADS  Google Scholar 

  17. L. Zadoina, K. Soulantica, S. Ferrere, B. Lonetti, M. Respaud, A.-F. Mingotaud, A. Falqui, A. Genovese, B. Chaudret, M. Mauzac, In situ synthesis of cobalt nanoparticles in functionalized liquid crystalline polymers. J. Mater. Chem., 6988. (2011)

    Google Scholar 

  18. L. Meziane, C. Salzemann, C. Aubert, H. Gérard, C. Petit, M. Petit, Hcp cobalt nanocrystals with high magnetic anisotropy prepared by easy one-pot synthesis. Nanoscale 8, 18640–18645 (2016)

    Article  Google Scholar 

  19. C. Petit, M.P. Pileni, Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J. Phys. Chem. B 103, 1805–1810 (1999)

    Article  Google Scholar 

  20. I. Lisiecki, M.P. Pileni, Synthesis of well-defined and low size distribution cobalt nanocrystals: the limited influence of reverse micelles. Langmuir 19, 9486–9489 (2003)

    Article  Google Scholar 

  21. S. Costanzo, G. Simon, J. Richardi, P. Colomban, I. Lisiecki, Solvent effects on cobalt nanocrystal synthesis—a facile strategy to control the size of Co nanocrystals. J. Phys. Chem. C 120, 22054–22061 (2016)

    Article  Google Scholar 

  22. C. Petit, Z.L. Wang, M.P. Pileni, Ferromagnetic cobalt nanocrystals achieved by soft annealing approach-from individual behavior to mesoscopic organized properties. J. Magn. Magn. Mater. (2007)

    Google Scholar 

  23. I. Lisiecki, C. Salzemann, D. Parker, P. Albouy, M. Pileni, P. Marie, I. Lisiecki, C. Salzemann, M. Pileni, M. Curie, Emergence of new collective properties of cobalt nanocrystals ordered in Fcc supracrystals : I. Struct. Invest. 12625–12631 (2007)

    Google Scholar 

  24. M.D. Bentzon, A.R. Thölén, Phase contrast from a regular stacking of equally sized iron-oxide spheres. Ultramicroscopy 38, 105–115 (1991)

    Article  Google Scholar 

  25. M.D. Bentzon, J. van Wonterghem, S. Mørup, A. Thölén, C.J.W. Koch, Ordered aggregates of ultrafine iron oxide particles: “super crystals.” Philos. Mag. Part B 60, 169–178 (1989)

    Article  ADS  Google Scholar 

  26. M. Li, Y. Chen, N. Ji, D. Zeng, D.L. Peng, Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices. Mater. Chem. Phys. 147, 604–610 (2014)

    Article  Google Scholar 

  27. M. Okuda, Y. Kobayashi, K. Suzuki, K. Sonoda, T. Kondoh, A. Wagawa, A. Kondo, H. Yoshimura, Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 5, 991–993 (2005)

    Article  ADS  Google Scholar 

  28. T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)

    Google Scholar 

  29. L. Meng, W. Chen, Y. Tan, L. Zou, C. Chen, H. Zhou, Q. Peng, Y. Li, Fe3O4 octahedral colloidal crystals. Nano Res. 4, 370–375 (2011)

    Google Scholar 

  30. O. Kasyutich, R.D. Desautels, B.W. Southern, J. Van Lierop, Novel aspects of magnetic interactions in a macroscopic 3D nanoparticle-based crystal. Phys. Rev. Lett. 104, 1–4 (2010)

    Article  Google Scholar 

  31. C. Petit, P. Lixon, M.P. Pileni, Structural study of divalent metal bis(2-ethylhexyl) sulfosuccinate aggregates. Langmuir 7, 2620–2625 (1991)

    Article  Google Scholar 

  32. I. Lisiecki, P. André, A. Filankembo, C. Petit, J. Tanori, T. Gulik-Krzywicki, B.W. Ninham, M.P. Pileni, Mesostructured fluids. 1. Cu(AOT)2−H2O−isooctane in oil rich regions. J. Phys. Chem. B 103, 9168–9175 (1999)

    Google Scholar 

  33. I. Lisiecki, P. André, A. Filankembo, C. Petit, J. Tanori, T. Gulik-Krzywicki, B.W. Ninham, M.P. Pileni, Mesostructured fluids. 2. Microstructure and supra-aggregation. J. Phys. Chem. B 103, 9176–9189 (1999)

    Google Scholar 

  34. G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal. Inorg. Chem. 32, 474–477 (1993)

    Google Scholar 

  35. J. Eastoe, T.F. Towey, B.H. Robinson, J. Williams, R.K. Heenan, Structures of metal bis(2-ethylhexylsulfosuccinate) aggregates in cyclohexane. J. Phys. Chem. 97, 1459–1463 (1993)

    Article  Google Scholar 

  36. J.A. Gutierrez, M. Alejandra Luna, N. Mariano Correa, J.J. Silber, R. Darío Falcone, The impact of the polar core size and external organic media composition on micelle–micelle interactions: the effect on gold nanoparticle synthesis. New J. Chem. 39, 8887–8895 (2015)

    Article  Google Scholar 

  37. N.P. Adhikari, X. Peng, A. Alizadeh, S. Ganti, S.K. Nayak, S.K. Kumar, Multiscale modeling of the surfactant mediated synthesis and supramolecular assembly of cobalt nanodots. Phys. Rev. Lett. 93, 1–4 (2004)

    Article  Google Scholar 

  38. Q. Zeng, X. Jiang, A. Yu, G.M. Lu, Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18, 35708 (2007)

    Article  Google Scholar 

  39. D. Larcher, R. Patrice, Preparation of metallic powders and alloys in polyol media: a thermodynamic approach. J. Solid State Chem. 154, 405–411 (2000)

    Article  ADS  Google Scholar 

  40. F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.Y. Silvert, K. Tekaia-Elhsissen, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct. Mater. 11, 1277–1284 (1999)

    Article  Google Scholar 

  41. F. Fievet, J.P. Lagier, M. Figlarz, Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14, 29–34 (1989)

    Article  Google Scholar 

  42. Y.H. Kim, D.K. Lee, H.G. Cha, C.W. Kim, Y.S. Kang, Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. J. Phys. Chem. C 111, 3629–3635 (2007)

    Article  Google Scholar 

  43. S.I. Cha, C.B. Mo, K.T. Kim, S.H. Hong, Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process. J. Mater. Res. 20, 2148–2153 (2005)

    Article  ADS  Google Scholar 

  44. R.J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, B. Jeyadevan, Designed synthesis of cobalt and its alloys by polyol process. J. Solid State Chem. 180, 3008–3018 (2007)

    Article  ADS  Google Scholar 

  45. C. Petit, M. Petit, C. Aubert, L. Meziane, H. Gerard, C. Salzemann, Ambient-temperature ferromagnetic cobalt nanoparticles, production method thereof and uses of same (2017)

    Google Scholar 

  46. P.N. Pusey, W. Van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986)

    Article  ADS  Google Scholar 

  47. D.A. Kofke, P.G. Bolhuis, Freezing of polydisperse hard spheres. Phys. Rev. E 59, 618–622 (1999)

    Article  ADS  Google Scholar 

  48. P.G. Bolhuis, D.A. Kofke, Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634–643 (1996)

    Article  ADS  Google Scholar 

  49. S. Auer, D. Frenkel, Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413, 711–713 (2001)

    Article  ADS  Google Scholar 

  50. L.A. Fernández, V. Mart’in-Mayor, B. Seoane, P. Verrocchio, Separation and fractionation of order and disorder in highly polydisperse systems. Phys. Rev. E 82, 21501 (2010)

    Google Scholar 

  51. S.J. Khan, F. Pierce, C.M. Sorensen, A. Chakrabarti, Self-assembly of ligated gold nanoparticles: phenomenological modeling and computer simulations. Langmuir 25, 13861–13868 (2009)

    Article  Google Scholar 

  52. N. Goubet, J. Richardi, P.A. Albouy, M.P. Pileni, How to predict the growth mechanism of supracrystals from gold nanocrystals. J. Phys. Chem. Lett. 2, 417–422 (2011)

    Article  Google Scholar 

  53. N. Goubet, J. Richardi, P.A. Albouy, M.P. Pileni, Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 21, 2693–2704 (2011)

    Article  Google Scholar 

  54. K. Butter, P.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Direct observation of dipolar chains in ferro uids in zero eld using cryogenic electron microscopy. Direct 15 (2003)

    Google Scholar 

  55. M. Klokkenburg, R.P.A. Dullens, W.K. Kegel, B.H. Erné, A.P. Philipse, Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids. Phys. Rev. Lett. 96, 37203 (2006)

    Article  ADS  Google Scholar 

  56. M. Klokkenburg, B.H. Erné, J.D. Meeldijk, A. Wiedenmann, A.V. Petukhov, R.P.A. Dullens, A.P. Philipse, In situ imaging of field-induced hexagonal columns in magnetite ferrofluids. Phys. Rev. Lett. 97, 4–7 (2006)

    Article  Google Scholar 

  57. J. Richardi, One-dimensional assemblies of charged nanoparticles in water: a simulation study. J. Chem. Phys. 130 (2009)

    Google Scholar 

  58. Z. Yang, M. Cavalier, M. Walls, P. Bonville, I. Lisiecki, M.-P. Pileni, A Phase-solution annealing strategy to control the cobalt nanocrystal anisotropy: structural and magnetic investigations. J. Phys. Chem. C 116, 15723–15730 (2012)

    Article  Google Scholar 

  59. I. Lisiecki, P.-A. Albouy, M.-P. Pileni, “Supra” crystal: control of the ordering of self-organization of cobalt nanocrystals at the mesoscopic scale. J. Phys. Chem. B 108, 20050–20055 (2004)

    Article  Google Scholar 

  60. S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D. Appl. Phys. 42 (2009)

    Google Scholar 

  61. A.G. Roca, R. Costo, A.F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreño, M.P. Morales, C.J. Serna, Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 42, 224002 (2009)

    Article  ADS  Google Scholar 

  62. J.S. Weinstein, C.G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W.D. Rooney, L.L. Muldoon, E.A. Neuwelt, Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 30, 15–35 (2010)

    Article  Google Scholar 

  63. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, Magnetic recording: advancing into the future. J. Phys. D. Appl. Phys. 35 (2002)

    Google Scholar 

  64. S. Mørup, Superferromagnetic nanostructures. Hyperfine Interact. 90, 171–185 (1994)

    Article  ADS  Google Scholar 

  65. P.E. Jönsson, Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv. Chem. Phys. 191–248 (2004)

    Google Scholar 

  66. S. Bedanta, T. Eimiller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, P.P. Freitas, Overcoming the dipolar disorder in dense CoFe nanoparticle ensembles: superferromagnetism. Phys. Rev. Lett. 98, 10–13 (2007)

    Google Scholar 

  67. J.P. Bouchaud, P.G. Zérah, Dipolar ferromagnetism: a monte carlo study. Phys. Rev. B 47, 9095–9097 (1993)

    Article  ADS  Google Scholar 

  68. S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D Appl. Phys. 42, 13001 (2009)

    Article  Google Scholar 

  69. I. Lisiecki, D. Parker, C. Salzemann, M.P. Pileni, Face-centered cubic supra-crystals and disordered three-dimensional assemblies of 7.5 Nm cobalt nanocrystals: influence of the mesoscopic ordering on the magnetic properties. Chem. Mater. 19, 4030–4036 (2007)

    Google Scholar 

  70. S. Hariharan, J. Gass, Superparamagnetism and magneto-caloric effect (MCE) in functional magnetic nanostructures. Rev. Adv. Mater. Sci. 10, 398–402 (2005)

    Google Scholar 

  71. H. Zeng, J. Zhang, C. Kuang, M. Yue, Magnetic entropy change in bulk nanocrystalline Gd metals. Appl. Nanosci. 1, 51–57 (2011)

    Article  ADS  Google Scholar 

  72. J. Dormann, L. Spinu, E. Tronc, J. Jolivet, F. Lucari, F. D’Orazio, D. Fiorani, Effect of interparticle interactions on the dynamical properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 183, L255–L260 (1998)

    Article  ADS  Google Scholar 

  73. J. Tuaillon, J.P. Perez, V. Dupuis, A. Perez, Of Iron and Nickel 8853, 437–438 (1995)

    Google Scholar 

  74. J. Filippi, V.S. Amaral, B. Barbara, High-field magnetization curve of random-anisotropy amorphous magnet: observation of a crossover and link to structural short-range order. Phys. Rev. B 44, 2842–2845 (1991)

    Article  ADS  Google Scholar 

  75. D. Parker, I. Lisiecki, M.P. Pileni, Do 8 Nm co nanocrystals in long-range-ordered face-centered cubic (Fcc) supracrystals show superspin glass behavior? J. Phys. Chem. Lett. 1, 1139–1142 (2010)

    Article  Google Scholar 

  76. J. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993)

    Google Scholar 

  77. P. Svedlindh, P. Nordblad, M.F. Hansen, Spin glass like transition in a highly concentrated Fe-C nanoparticle system 139, 1999–2000 (2000)

    Google Scholar 

  78. M.F. Hansen, P.E. Jönsson, P. Nordblad, P. Svedlindh, Critical dynamics of an interacting magnetic nanoparticle system. J. Phys. Condens. Matter 14, 4901–4914 (2002)

    Article  ADS  Google Scholar 

  79. I. Lisiecki, S. Nakamae, Crystalline order effects on the magnetic properties of superlattices made of cobalt nanocrystals. J. Phys. Conf. Ser. 521, 12007 (2014)

    Article  Google Scholar 

  80. Y. Lalatonne, J. Richardi, P.M.P. Van Der, Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat. Mater. 3, 121–125 (2004)

    Article  ADS  Google Scholar 

  81. Y. Lalatonne, L. Motte, J. Richardi, M.P. Pileni, Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals. Phys. Rev. E 71, 11404 (2005)

    Article  ADS  Google Scholar 

  82. J. Richardi, M.P. Pileni, J.-J. Weis, Self-organization of magnetic nanoparticles: a Monte Carlo study. Phys. Rev. E 77, 61510 (2008)

    Article  ADS  Google Scholar 

  83. J. Richardi, M.P. Pileni, J.J. Weis, Self-organization of confined dipolar particles in a parallel field. J. Chem. Phys. 130 (2009)

    Google Scholar 

  84. J. Richardi, J.J. Weis, Low density mesostructures of confined dipolar particles in an external field. J. Chem. Phys. 135 (2011)

    Google Scholar 

  85. R. Tao, Q. Jiang, Simulation of structure formation in an electrorheological fluid. Phys. Rev. Lett. 73, 205–208 (1994)

    Article  ADS  Google Scholar 

  86. A. Satoh, Development of effective Stokesian dynamics method for ferromagnetic colloidal dispersions (cluster-based Stokesian dynamics method). J. Colloid Interf. Sci. 255, 98–106 (2002)

    Article  ADS  Google Scholar 

  87. M. Mohebi, N. Jamasbi, J. Liu, Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field. Phys. Rev. E 54, 5407–5413 (1996)

    Article  ADS  Google Scholar 

  88. J.E. Martin, R.A. Anderson, C.P. Tigges, Simulation of the athermal coarsening of composites structured by a uniaxial field. J. Chem. Phys. 108, 3765–3787 (1998)

    Article  ADS  Google Scholar 

  89. J.E. Martin, R.A. Anderson, C.P. Tigges, Thermal coarsening of uniaxial and biaxial field-structured composites. J. Chem. Phys. 110, 4854 (1999)

    Google Scholar 

  90. J.E. Martin, K.M. Hill, C.P. Tigges, Magnetic-field-induced optical transmittance in colloidal suspensions. Phys. Rev. E 59, 5676–5692 (1999)

    Article  ADS  Google Scholar 

  91. Z. Wang, H. Fang, Z. Lin, L. Zhou, Simulation of field-induced structural formation and transition in electromagnetorheological suspensions. Phys. Rev. E 61, 6837–6844 (2000)

    Article  ADS  Google Scholar 

  92. A.-P. Hynninen, M. Dijkstra, Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field. Phys. Rev. Lett. 94, 138303 (2005)

    Article  ADS  Google Scholar 

  93. R. Haghgooie, P.S. Doyle, Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75, 1–13 (2007)

    Google Scholar 

  94. R. Haghgooie, P.S. Doyle, MR fluid structure in quasi-2D. Europhys. Lett. 77, 18002 (2007)

    Article  ADS  Google Scholar 

  95. J. Jordanovic, S.H.L. Klapp, Field-induced layer formation in dipolar nanofilms. Phys. Rev. Lett. 101, 38302 (2008)

    Article  ADS  Google Scholar 

  96. R.A. Trasca, S.H.L. Klapp, Structure formation in layered ferrofluid nanofilms. J. Chem. Phys. 129 (2008)

    Google Scholar 

  97. S.C. Ferreira, C. Castellano, R. Pastor-Satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86, 41125 (2012)

    Article  ADS  Google Scholar 

  98. J. Richardi, M.P. Pileni, Towards efficient methods for the study of pattern formation in ferrofluid films. Eur. Phys. J. E 13, 99–106 (2004)

    Article  Google Scholar 

  99. J. Richardi, D. Ingert, M.P. Pileni, Theoretical study of the field-induced pattern formation in magnetic liquids. Phys. Rev. E 66, 46306 (2002)

    Article  ADS  Google Scholar 

  100. M. Ivey, J. Liu, Y. Zhu, S. Cutillas, Magnetic-field-induced structural transitions in a ferrofluid emulsion. Phys. Rev. E 63, 11403 (2000)

    Article  Google Scholar 

  101. A.K. Agarwal, A. Yethiraj, Low-density ordered phase in brownian dipolar colloidal suspensions. Phys. Rev. Lett. 102, 198301 (2009)

    Article  ADS  Google Scholar 

  102. V. Germain, J. Richardi, D. Ingert, M.P. Pileni, Mesostructures of cobalt nanocrystals. 1. Experiment and theory. J. Phys. Chem. B 109, 5541–5547 (2005)

    Google Scholar 

  103. M.P. Pileni, Self organization of inorganic nanocrystals: unexpected chemical and physical properties. J. Colloid Interface Sci. 388, 1–8 (2012)

    Article  ADS  Google Scholar 

  104. A. Kumar, B. Khusid, Z. Qiu, A. Acrivos, New electric-field-driven mesoscale phase transitions in polarized suspensions. Phys. Rev. Lett. 95, 258301 (2005)

    Article  ADS  Google Scholar 

  105. J. Liu, E.M. Lawrence, A. Wu, M.L. Ivey, G.A. Flores, K. Javier, J. Bibette, J. Richard, Field-induced structures in ferrofluid emulsions. Phys. Rev. Lett. 74, 2828–2831 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has been supported by a grant ANR-CE08-007 from the ANR French Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Richardi or Isabelle Lisiecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richardi, J., Petit, C., Lisiecki, I. (2021). Magnetic Self-Assembling of Spherical Co Nanoparticles Used as Building Blocks: Syntheses, Properties and Theory. In: Peddis, D., Laureti, S., Fiorani, D. (eds) New Trends in Nanoparticle Magnetism. Springer Series in Materials Science, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-030-60473-8_8

Download citation

Publish with us

Policies and ethics