Skip to main content

Neuro-Symbolic Artificial Intelligence: Application for Control the Quality of Product Labeling

  • Conference paper
  • First Online:
Open Semantic Technologies for Intelligent System (OSTIS 2020)

Abstract

The paper presents the implementation of an intelligent decision support system (IDSS) to solve a real manufacturing problem at JSC “Savushkin Product”. The proposed system is intended to control the quality of product labeling, based on neuro-symbolic artificial intelligence, namely integrating deep neural networks and semantic models. The system perform localization and recognition of images from a high-speed video stream and is based on several deep neural networks. Semantic networks fulfill intelligent processing of recognition results in order to generate final decision as regards the state of the production conveyor. We demonstrate the performance of the proposed technique in the real production process. The main contribution of this paper is a novel view at the creation of a real intelligent decision support system, which combines bio inspired approach, namely neural networks and conventional technique, based on a knowledge base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  Google Scholar 

  2. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation, November 2017. https://arxiv.org/pdf/1711.03902.pdf. Accessed June 2020

  3. Castelvecchi, D.: Can we open the black box of AI? Nat. News 538(7623), 20–23 (2016)

    Article  Google Scholar 

  4. d’Avila Garcez, A., et al.: Neuralsymbolic learning and reasoning: contributions and challenges. In: McCallum, A., Gabrilovich, E., Guha, R., Murphy, K. (eds.) Proceedings of the AAAI 2015 Propositional Rule Extraction under Background Knowledge 11 Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches. AAAI Press Technical Report SS-15-03 (2015)

    Google Scholar 

  5. d’Avila Garcez, A., Lamb, L., Gabbay, D.: Neural-symbolic cognitive reasoning. Cognitive Technologies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-73246-4

    Book  MATH  Google Scholar 

  6. Golenkov, V., Guliakina, N., Davydenko, I., Eremeev, A.: Methods and tools for ensuring compatibility of computer systems. In: Golenkov, V. (ed.) Open Semantic Technologies for Intelligent Systems, vol. 2, pp. 25–52. BSUIR, Minsk (2019)

    Google Scholar 

  7. Golovko, V.A.: Deep learning: an overview and main paradigms. Opt. Mem. Neural Netw. 26(1), 1–17 (2017). https://doi.org/10.3103/S1060992X16040081

    Article  Google Scholar 

  8. Golovko, V., Bezobrazov, S., Kroshchanka, A., Sachenko, A., Komar, M.: Convolutional neural network based solar photovoltaic panel detection in satellite photos. In: Proceedings of Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 9th IEEE International Conference, Bucharest, Romania, no. 2, pp. 14–19 (2017)

    Google Scholar 

  9. Golovko, V., Komar, M., Sachenko, A.: Principles of neural network artificial immune system design to detect attacks on computers. In: Proceedings of the 10th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science, TCSET 2010, p. 237 (2010)

    Google Scholar 

  10. Golovko, V., Kroshchanka, A., Treadwell, D.: The nature of unsupervised learning in deep neural networks: a new understanding and novel approach. Opt. Mem. Neural Netw. 25(3), 127–141 (2016). https://doi.org/10.3103/S1060992X16030073

    Article  Google Scholar 

  11. Golovko, V., Kroshchanka, A., Mikhno, E.: Brands and caps labeling recognition in images using deep learning. In: Ablameyko, S.V., Krasnoproshin, V.V., Lukashevich, M.M. (eds.) PRIP 2019. CCIS, vol. 1055, pp. 35–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35430-5_4

    Chapter  Google Scholar 

  12. Golovko, V.A., et al.: Integration of artificial neural networks and knowledge bases. In: Golenkov, V. (ed.) Open Semantic Technologies for Intelligent Systems, vol. 2, pp. 133–145. BSUIR, Minsk (2018)

    Google Scholar 

  13. Golovko, V.A., Ivashenko, V.P., Taberko, V.V., Ivaniuk, D.S., Kroshchanka, A.A., Kovalev, M.V.: Principles of decision making building systems based on the integration of neural networks and semantic models. In: Golenkov, V. (ed.) Open Semantic Technologies for Intelligent Systems, vol. 2, pp. 91–102. BSUIR, Minsk (2019)

    Google Scholar 

  14. Golovko, V., Savitsky, Y., Laopoulos, T., Sachenko, A., Grandinetti, L.: Technique of learning rate estimation for efficient training of MLP. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, pp. 323–328 (2000)

    Google Scholar 

  15. Hammer, B., Hitzler, P.: Perspectives of neural-symbolic integration. Studies in Computational Intelligence, vol. 77. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73954-8

    Book  MATH  Google Scholar 

  16. Hatzilygeroudis, I., Prentzas, J.: Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems. Expert Syst. Appl. 27, 63–75 (2004)

    Article  Google Scholar 

  17. Hatzilygeroudis, I., Prentzas, J.: Neuro-symbolic approaches for knowledge representation in expert systems. Int. J. Hybrid Intell. Syst. 1(3–4), 11–126 (2014)

    MATH  Google Scholar 

  18. Hinton, G.: Deep neural network for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  19. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of semantic web technologies. Chapman & Hall/CRC Textbooks in Computing. Chapman & Hall/CRC, Boca Raton (2009)

    Book  Google Scholar 

  20. Howard, A.G., et al.: Mobilenets: efficient convolutionalneural networks for mobile vision applications, April 2017. https://arxiv.org/pdf/1704.04861.pdf. Accessed June 2020

  21. Hui, J.: Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3) May 2018. https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359. Accessed June 2020

  22. Komar, M., Yakobchuk, P., Golovko, V., Dorosh, V., Sachenko, A.: Deep neural network for image recognition based on the Caffe framework. In: Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, pp. 102–106 (2018)

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Advances in Neural Information Processing Systems (NIPS-2012), Lake Tahoe, no. 25, pp. 1090–1098 (2012)

    Google Scholar 

  24. LeCun, Y., Yoshua, B., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  25. Lehmann, F.: Semantic networks. Comput. Math. Appl. 23(2–5), 1–50 (1992)

    Article  Google Scholar 

  26. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept learner: interpreting scenes, words, and sentences from natural supervision. In: ICLR (2004)

    Google Scholar 

  27. Mikolov, T., Deoras, A., Povey, D., Burget, L., Cernocky, J.: Strategies for training large scale neural network language models. In: IEEE Workshop Automatic Speech Recognition and Understanding, Waikoloa, pp. 195–201 (2011)

    Google Scholar 

  28. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  29. Omron documentation. https://robotics.omron.com/browse-documents. Accessed June 2020

  30. Phoenix contact — control technology and software - intelligent automation. https://www.phoenixcontact.com/assets/2018/interactive_ed/101_86135/index.html#4. Accessed June 2020

  31. Phoenix contact — safety controller - rfc 4072s–1051328. https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=1051328&library=usen&tab=1. Accessed June 2020

  32. Pinkas, G., Lima, P., Cohen, S.: A dynamic binding mechanism for retrieving and unifying complex predicate-logic knowledge. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7552, pp. 482–490. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33269-2_61

    Chapter  Google Scholar 

  33. Power, D.: Decision Support Systems: Concepts and Resources for Managers. Expert Systems with Applications, p. 251. Greenwood Publishing Group, Westport (2002)

    Google Scholar 

  34. Saraev, A., Shcherbina, O.A.: System analysis and modern information technologies. In: Proceedings of the Crimean Academy of Sciences, pp. 47–59. SONAT, Simferopol (2006)

    Google Scholar 

  35. Sarker, M.K., Xie, N., Doran, D., Raymer, M., Hitzler, P.: Explaining trained neural networks with semantic web technologies: first steps, October 2017. https://arxiv.org/pdf/1710.04324.pdf. Accessed June 2020

  36. Shunkevich, D.: Agent-oriented models, method and tools of compatible problem solvers development for intelligent systems. In: Golenkov, V. (ed.) Open Semantic Technologies for Intelligent Systems, vol. 2, pp. 119–132. BSUIR, Minsk (2018)

    Google Scholar 

  37. Sowa, J.: Semantic networks. In: Encyclopedia of artificial intelligence. Expert Systems with Applications (1987)

    Google Scholar 

  38. Tarasov, V.: Ot mnogoagentnih sistem k intellektualnim organizaciyam filosofiya psihologiya informatika, p. 352 (2002)

    Google Scholar 

  39. Tariq, A., Rafi, K.: Intelligent decision support systems. Inf. Knowl. Manage. 2(6) (2012). ISSN 2224–5758 (Paper) ISSN 2224–896X (Online)

    Google Scholar 

  40. Vagin, V., Zagoryanskaya, A., Fomina, M.: Dostovernii i pravdopodobnii vivod v intellektualnih sistemah, p. 704 (2008)

    Google Scholar 

  41. Workshop series on neural-symbolic learning and reasoning. http://www.neural-symbolic.org/. Accessed June 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kovalev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golovko, V., Kroshchanka, A., Kovalev, M., Taberko, V., Ivaniuk, D. (2020). Neuro-Symbolic Artificial Intelligence: Application for Control the Quality of Product Labeling. In: Golenkov, V., Krasnoproshin, V., Golovko, V., Azarov, E. (eds) Open Semantic Technologies for Intelligent System. OSTIS 2020. Communications in Computer and Information Science, vol 1282. Springer, Cham. https://doi.org/10.1007/978-3-030-60447-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60447-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60446-2

  • Online ISBN: 978-3-030-60447-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics