Abstract
Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class \(\mathcal{G}\) if they are so on the atoms (graphs with no clique cut-set) of \(\mathcal{G}\). Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is \((H_1,H_2)\)-free if it is both \(H_1\)-free and \(H_2\)-free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for \((H_1,H_2)\)-free graphs, as evidenced by one known example. We prove the existence of another such pair \((H_1,H_2)\) and classify the boundedness of clique-width on \((H_1,H_2)\)-free atoms for all but 18 cases.
The research in this paper received support from the Leverhulme Trust (RPG-2016-258). Masařík and Novotná were supported by Charles University student grants (SVV-2017-260452 and GAUK 1277018) and GAČR project (17-09142S). The last author was supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.
A preprint of the full version of this paper is available from arXiv [29].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alekseev, V.E.: On easy and hard hereditary classes of graphs with respect to the independent set problem. Discrete Appl. Math. 132(1–3), 17–26 (2003). https://doi.org/10.1016/S0166-218X(03)00387-1
Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013). https://doi.org/10.1016/j.tcs.2013.01.011
Blanché, A., Dabrowski, K.K., Johnson, M., Lozin, V.V., Paulusma, D., Zamaraev, V.: Clique-width for graph classes closed under complementation. SIAM J. Discrete Math. 34(2), 1107–1147 (2020). https://doi.org/10.1137/18M1235016
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219
Bodlaender, H.L., Brettell, N., Johnson, M., Paesani, G., Paulusma, D., van Leeuwen, E.J.: Steiner trees for hereditary graph classes. Proc. LATIN 2020, LNCS (2020, to appear)
Boliac, R., Lozin, V.: On the clique-width of graphs in hereditary classes. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 44–54. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36136-7_5
Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of \(H\)-free split graphs. Discrete Appl. Math. 211, 30–39 (2016). https://doi.org/10.1016/j.dam.2016.04.003
Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of \(H\)-free chordal graphs. J. Graph Theory 86(1), 42–77 (2017). https://doi.org/10.1002/jgt.22111
Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight stable set problem. Theor. Comput. Sci. 389(1–2), 295–306 (2007). https://doi.org/10.1016/j.tcs.2007.09.031
Brandstädt, A., Klembt, T., Mahfud, S.: \(P_6\)- and triangle-free graphs revisited: structure and bounded clique-width. Discrete Math. Theor. Comput. Sci. 8(1), 173–188 (2006). https://dmtcs.episciences.org/372
Brandstädt, A., Le, H.O., Mosca, R.: Gem- and co-gem-free graphs have bounded clique-width. Int. J. Found. Comput. Sci. 15(1), 163–185 (2004). https://doi.org/10.1142/S0129054104002364
Brandstädt, A., Le, H.O., Mosca, R.: Chordal co-gem-free and (\(P_5\),gem)-free graphs have bounded clique-width. Discrete Appl. Math. 145(2), 232–241 (2005). https://doi.org/10.1016/j.dam.2004.01.014
Brandstädt, A., Mahfud, S.: Maximum weight stable set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time. Inf. Process. Lett. 84(5), 251–259 (2002). https://doi.org/10.1016/S0020-0190(02)00291-0
Brandstädt, A., Mosca, R.: On distance-3 matchings and induced matchings. Discrete Appl. Math. 159(7), 509–520 (2011). https://doi.org/10.1016/j.dam.2010.05.022
Brettell, N., Horsfield, J., Munaro, A., Paesani, G., Paulusma, D.: Bounding the mim-width of hereditary graph classes. In: Cao, Y., Pilipczuk, M. (eds.) IPEC 2020. LIPIcs vol. 180, pp. 6:1–6:19 (2020). https://doi.org/10.4230/LIPIcs.IPEC.2020.6
Bui-Xuan, B., Telle, J.A., Vatshelle, M.: Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci. 511, 66–76 (2013). https://doi.org/10.1016/j.tcs.2013.01.009
Cameron, K., da Silva, M.V.G., Huang, S., Vušković, K.: Structure and algorithms for (cap, even hole)-free graphs. Discrete Math. 341(2), 463–473 (2018). https://doi.org/10.1016/j.disc.2017.09.013
Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. London Math. Soc. Lecture Note Series 327, 153–171 (2005). https://doi.org/10.1017/CBO9780511734885.008
Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34, 825–847 (2005). https://doi.org/10.1137/S0097539701385351
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H
Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications, vol. 138. Cambridge University Press (2012). https://doi.org/10.1017/CBO9780511977619
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000). https://doi.org/10.1016/S0166-218X(99)00184-5
Dabrowski, K.K., Dross, F., Paulusma, D.: Colouring diamond-free graphs. J. Comput. Syst. Sci. 89, 410–431 (2017). https://doi.org/10.1016/j.jcss.2017.06.005
Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding clique-width via perfect graphs. J. Comput. Syst. Sci. 104, 202–215 (2019). https://doi.org/10.1016/j.jcss.2016.06.007
Dabrowski, K.K., Johnson, M., Paulusma, D.: Clique-width for hereditary graph classes. London Math. Soc. Lecture Note Series 456, 1–56 (2019). https://doi.org/10.1017/9781108649094.002
Dabrowski, K.K., Lozin, V.V., Paulusma, D.: Clique-width and well-quasi-ordering of triangle-free graph classes. J. Comput. Syst. Sci. 108, 64–91 (2020). https://doi.org/10.1016/j.jcss.2019.09.001
Dabrowski, K.K., Lozin, V.V., Raman, R., Ries, B.: Colouring vertices of triangle-free graphs without forests. Discrete Math. 312(7), 1372–1385 (2012). https://doi.org/10.1016/j.disc.2011.12.012
Dabrowski, K.K., Masařík, T., Novotná, J., Paulusma, D., Rzążewski, P.: Clique-width: Harnessing the power of atoms. CoRR abs/2006.03578 (2020). https://arxiv.org/abs/2006.03578
Dabrowski, K.K., Paulusma, D.: Classifying the clique-width of \({H}\)-free bipartite graphs. Discrete Appl. Math. 200, 43–51 (2016). https://doi.org/10.1016/j.dam.2015.06.030
Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two forbidden induced subgraphs. Comput. J. 59(5), 650–666 (2016). https://doi.org/10.1093/comjnl/bxv096
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_12
Foley, A.M., Fraser, D.J., Hoàng, C.T., Holmes, K., LaMantia, T.P.: The intersection of two vertex coloring problems. Graphs Comb. 36(1), 125–138 (2020). https://doi.org/10.1007/s00373-019-02123-1
Fraser, D.J., Hamel, A.M., Hoàng, C.T., Holmes, K., LaMantia, T.P.: Characterizations of \((4K_1, C_4, C_5)\)-free graphs. Discrete Appl. Math. 231, 166–174 (2017). https://doi.org/10.1016/j.dam.2016.08.016
Gaspers, S., Huang, S., Paulusma, D.: Colouring square-free graphs without long induced paths. J. Comput. Syst. Sci. 106, 60–79 (2019). https://doi.org/10.1016/j.jcss.2019.06.002
Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theor. Comput. Sci. 299(1), 719–734 (2003). https://doi.org/10.1016/S0304-3975(02)00725-9
Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017). https://doi.org/10.1002/jgt.22028
Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math. 21, 325–356 (1984). https://doi.org/10.1016/S0304-0208(08)72943-8
Gurski, F.: The behavior of clique-width under graph operations and graph transformations. Theory Comput. Syst. 60(2), 346–376 (2017). https://doi.org/10.1007/s00224-016-9685-1
Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. ACM Trans. Algorithms 15(2), 25:1–25:90 (2019). https://doi.org/10.1145/3301445
Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008). https://doi.org/10.1093/comjnl/bxm052
Hoàng, C.T., Lazzarato, D.A.: Polynomial-time algorithms for minimum weighted colorings of \((P_5,\overline{P_5})\)-free graphs and similar graph classes. Discrete Appl. Math. 186, 106–111 (2015). https://doi.org/10.1016/j.dam.2015.01.022
Huang, S., Karthick, T.: On graphs with no induced five-vertex path or paraglider. CoRR abs/1903.11268 (2019). https://arxiv.org/abs/1903.11268
Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl. Math. 75(2), 135–155 (1997). https://doi.org/10.1016/S0166-218X(96)00085-6
Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009). https://doi.org/10.1016/j.dam.2008.08.022
Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Appl. Math. 126(2–3), 197–221 (2003). https://doi.org/10.1016/S0166-218X(02)00198-1
Lozin, V.V., Rautenbach, D.: On the band-, tree-, and clique-width of graphs with bounded vertex degree. SIAM J. Discrete Math. 18(1), 195–206 (2004). https://doi.org/10.1137/S0895480102419755
Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few \(P_4\)’s. Int. J. Found. Comput. Sci. 10(03), 329–348 (1999). https://doi.org/10.1142/S0129054199000241
Malyshev, D.S., Lobanova, O.O.: Two complexity results for the vertex coloring problem. Discrete Appl. Math. 219, 158–166 (2017). https://doi.org/10.1016/j.dam.2016.10.025
Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006). https://doi.org/10.1016/j.jctb.2005.10.006
Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theor. Comput. Sci. 377(1–3), 260–267 (2007). https://doi.org/10.1016/j.tcs.2007.03.043
Sæther, S.H., Vatshelle, M.: Hardness of computing width parameters based on branch decompositions over the vertex set. Theor. Comput. Sci. 615, 120–125 (2016). https://doi.org/10.1016/j.tcs.2015.11.039
Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55(2), 221–232 (1985). https://doi.org/10.1016/0012-365X(85)90051-2
Vatshelle, M.: New Width Parameters of Graphs. Ph.D. thesis, University of Bergen (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dabrowski, K.K., Masařík, T., Novotná, J., Paulusma, D., Rzążewski, P. (2020). Clique-Width: Harnessing the Power of Atoms. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-60440-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60439-4
Online ISBN: 978-3-030-60440-0
eBook Packages: Computer ScienceComputer Science (R0)