Skip to main content

Experimental Optimization of Propagation-Based BCT

  • Chapter
  • First Online:
X-Ray Phase-Contrast Tomography

Part of the book series: Springer Theses ((Springer Theses))

  • 260 Accesses

Abstract

Effective design and implementation of a propagation-based CT setup require careful optimization both in terms of physical parameters (hardware) and data processing (software). The goal of the present chapter is to describe and provide a scientific justification for several of these aspects, combining a theoretical/mathematical background with experimental results in the context of the SYRMA-3D project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nesterets YI, Gureyev TE (2014) Noise propagation in X-ray phase-contrast imaging and computed tomography. J Phys D: Appl Phys 47(10):105402. https://doi.org/10.1088/0022-3727/47/10/105402

    Article  ADS  Google Scholar 

  2. Gureyev TE, Nesterets YI, Kozlov A, Paganin DM, Quiney HM (2017) On the “unreasonable” effectiveness of transport of intensity imaging and optical deconvolution. JOSA A 34(12):2251–2260. https://doi.org/10.1364/JOSAA.34.002251

    Article  ADS  Google Scholar 

  3. Nesterets YI, Gureyev TE, Dimmock MR (2018) Optimisation of a propagation-based X-ray phase-contrast micro-CT system. J Phys D: Appl Phys 51(11):115402. https://doi.org/10.1088/1361-6560/aa5d3d

    Article  ADS  Google Scholar 

  4. Davis GR (1994) The effeCT of linear interpolation of the filtered projections on image noise in X-ray computed tomography. J X-ray Sci Technol 4(3):191–199. https://doi.org/10.3233/XST-1993-4303

    Article  MathSciNet  Google Scholar 

  5. Kitchen MJ, Buckley GA, Gureyev TE, Wallace MJ, Andres-Thio N, Uesugi K, Yagi N, Hooper SB (2017) CT dose reduction factors in the thousands using X-ray phase contrast. Scient Reports 7(1):15953. https://doi.org/10.1038/s41598-017-16264-x

    Article  ADS  Google Scholar 

  6. Gureyev TE, Nesterets YI, Stevenson AW, Miller PR, Pogany A, Wilkins SW (2008) Some simple rules for contrast, signal-to-noise and resolution in in-line X-ray phase-contrast imaging. Opt Exp 16(5):3223–3241. https://doi.org/10.1364/OE.16.003223

    Article  ADS  Google Scholar 

  7. SYRMEP. SYRMEP specifications (2016). www.elettra.trieste.it/lightsources/elettra/elettra-beamlines/syrmep/specification.html

  8. Taylor JA (2018) TS imaging. http://ts-imaging.science.unimelb.edu.au/Services/Simple/

  9. Brombal L, Donato S, Dreossi D, Arfelli F, Bonazza D, Contillo A, Delogu P, Di Trapani V, Golosio B, Mettivier G et al (2018) Phase-contrast breast CT: the effect of propagation distance. Phys Medi Biol 63(24): 24NT03. https://doi.org/10.1088/1361-6560/aaf2e1

  10. Brombal L (2020) Effectiveness of x-ray phase-contrast tomography: effects of pixel size and magnification on image noise. J Instrum 15(01):C01005. https://doi.org/10.1088/1748-0221/15/01/C01005

    Article  Google Scholar 

  11. Di Trapani V, Bravin A, Brun F, Dreossi D, Longo R, Mittone A, Rigon L, Delogu P (2018) Characterization of noise and efficiency of the pixirad-1/pixie-iii cdte x-ray imaging detector. J Instrum 13(12):C12008. https://doi.org/10.1088/1748-0221/13/12/C12008

    Article  Google Scholar 

  12. Gimenez E, Ballabriga R, Campbell M, Horswell I, Llopart X, Marchal J, Sawhney K, Tartoni N, Turecek D (2011) Study of charge-sharing in medipix3 using a micro-focused synchrotron beam. J Instrum 6(01):C01031. https://doi.org/10.1088/1748-0221/6/01/C01031

    Article  Google Scholar 

  13. Bravin A, Coan P, Suortti P (2012) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1. https://doi.org/10.1088/0031-9155/58/1/R1

    Article  Google Scholar 

  14. Rigon L (2014) X-ray imaging with coherent sources. In: Brahme A (ed) Comprehens Biomed Phys 2:193–216. Elsevier. https://doi.org/10.1016/B978-0-444-53632-7.00209-4

  15. Viccaro PJ (1991) Power distribution from insertion device X-ray sources. In: Advanced X-Ray/EUV radiation sources and applications, vol 1345, pp 28–38. International Society for Optics and Photonics. https://doi.org/10.1117/12.23298

  16. Donato S, Arfelli F, Brombal L, Longo R, Pinto A, Rigon L, Dreossi D (2020) Flattening filter for gaussian-shaped monochromatic x-ray beams: an application to breast computed tomography. J Synchrotron Radiat in press. https://doi.org/10.1107/S1600577519005502

  17. Piai A, Contillo A, Arfelli F, Bonazza D, Brombal L, Cova MA, Delogu P, Trapani VD, Donato S, Golosio B, Mettivier G, Oliva P, Rigon L, Taibi A, Tonutti M, Tromba G, Zanconati F, Longo R (2019) Quantitative characterization of breast tissues with dedicated CT imaging. Phys Med Biol 64(15):155011. https://doi.org/10.1088/1361-6560/ab2c29 Aug

    Article  Google Scholar 

  18. Brun F, Brombal L, Di Trapani V, Delogu P, Donato S, Dreossi D, Rigon L, Longo R (2019) Post-reconstruction 3D single-distance phase retrieval for multi-stage phase-contrast tomography with photon-counting detectors. J Synchrotron Radiat 26(2). https://doi.org/10.1107/S1600577519000237

  19. Ruhlandt A, Salditt T (2016) Three-dimensional propagation in near-field tomographic X-ray phase retrieval. Acta Crystallographica Sect A: Foundat Adv 72(2):215–221. https://doi.org/10.1107/S2053273315022469

    Article  MathSciNet  MATH  Google Scholar 

  20. Kyrieleis A, Ibison M, Titarenko V, Withers P (2009) Image stitching strategies for tomographic imaging of large objects at high resolution at synchrotron sources. Nucl Instrum Methods Phys Res Sect A: Acceler Spectromet Detectand Assoc Equip 607(3):677–684. https://doi.org/10.1016/j.nima.2009.06.030

    Article  ADS  Google Scholar 

  21. Vescovi R, Du M, Andrade VD, Scullin W, Gürsoy D, Jacobsen C (2018) Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron X-ray beams. J Synchrotron Radiat 25(5). https://doi.org/10.1107/S1600577518010093

  22. Vo NT, Drakopoulos M, Atwood RC, Reinhard C (2014) Reliable method for calculating the center of rotation in parallel-beam tomography. Opt Express 22(16):19078–19086. https://doi.org/10.1364/OE.22.019078

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Brombal .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brombal, L. (2020). Experimental Optimization of Propagation-Based BCT. In: X-Ray Phase-Contrast Tomography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-60433-2_5

Download citation

Publish with us

Policies and ethics