Skip to main content

Future Directions of PET and Molecular Imaging and Therapy with an Emphasis on Melanoma and Sarcoma

  • Chapter
  • First Online:
PET/CT and PET/MR in Melanoma and Sarcoma

Abstract

Although FDG PET imaging has been successful in the staging and follow-up of malignancies, including melanomas and sarcomas, there are still some important areas where it is still limited. Historically, many different tracers were used with SPECT imaging which provided an improvement over other cross-sectional imaging modalities, but certainly FDG PET has replaced most of those prior indications. Nevertheless, there continues to be development of more sophisticated tracers targeting receptors and metabolic processes, which potentially improve overall accuracy of staging. Many of these molecular imaging methodologies are used in different malignancies, but some are more specific for melanomas and sarcomas. Combined with the identification of disease with molecular imaging to identify appropriate targets of disease, the field of radiotheragnostics is emerging as a viable modality in providing another approach to the treatment of advanced disease. Here, the molecular targeting radiopharmaceuticals can be radiolabelled with other radioisotopes, which, when delivered in sufficient quantities, can also provide therapeutic benefit. Other fields such as optical imaging and radiomics are also emerging which could not only improve the initial noninvasive evaluation of patients but also provide in vivo assistance in guiding surgical management. Ultimately these are the basis for photodynamic therapy, which can complement radiotheragnostics and other treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  2. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pressman D, Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer. 1953;6:619–23.

    Article  CAS  PubMed  Google Scholar 

  4. Rosen G, Loren GJ, Brien EW, et al. Serial thallium-201 scintigraphy in osteosarcoma. Correlation with tumor necrosis after preoperative chemotherapy. Clin Orthop Rel Res. 1993;293:302.

    Google Scholar 

  5. Wu C, Wang Q, Li Y. Prediction and evaluation of neoadjuvant chemotherapy using the dual mechanisms of 99mTc-MIBI scintigraphy in patients with osteosarcoma. J Bone Oncol. 2019;17:100250.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kairemo K, Rohren EM, Anderson PM, et al. Development of sodium fluoride PET response criteria for solid tumours (NAFCIST) in a clinical trial of radium-223 in osteosarcoma: from RECIST to PERCIST to NAFCIST. ESMO Open. 2019;4(1):e00043.

    Article  Google Scholar 

  7. Turgut TH, Akisik MF, Naddaf SY, et al. Tumor and infection localization in AIDS patients: Ga-67 and Tl-201 findings. Clin Nucl Med. 1998;23:446–59.

    Article  Google Scholar 

  8. Friedberg JW, Van den Abbeele AD, Kehoe K, et al. Uptake of radiolabeled somatostatin analog is detectable in patients with metastatic foci of sarcoma. Cancer. 1999;86(8):1621–7.

    Article  CAS  PubMed  Google Scholar 

  9. Loaiza-Bonilla A, Bonilla-Reyes PA. Somatostatin receptor avidity in gastrointestinal stromal tumors: theranostic implications of Gallium-68 scan and eligibility for peptide receptor radionuclide therapy. Cureus. 2017;9(9):e1710.

    PubMed  PubMed Central  Google Scholar 

  10. Chen J, Chang J, Lew P, et al. Nuclear scintigraphy findings for Askin tumor with In111-pentetreotide, Tc99m-MIBI and F18-FDG. Radiology Case. 2012;6(10):32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cobben DC, Elsinga PH, Suurmeijer AJ, et al. Detection and grading of soft tissue sarcomas of the extremities with 18F–3fluoro-3-deoxy-l-thymidine. Clin Cancer Res. 2004;10:1685–90.

    Article  CAS  PubMed  Google Scholar 

  12. Leyton J, Latigo JR, Perumal M, et al. Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res. 2005;65(10):4202–10.

    Article  CAS  PubMed  Google Scholar 

  13. Rajendran JG, Wilson DC, Conrad EU, et al. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  CAS  PubMed  Google Scholar 

  14. Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson PM, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  16. Franzius C, Schuck A, Bielack SS. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20(7):1953–4.

    Article  PubMed  Google Scholar 

  17. Subbiah V, Anderson PM, Kairemo K, et al. Alpha particle radium 223 dichloride in high-risk osteosarcoma: a phase I dose escalation trial. Clin Cancer Res. 2019;25(13):3802–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava SC, Atkins HL, Krishnamurthy GT, et al. Treatment of metastatic bone pain with tin-117m Stannic diethylenetriaminepentaacetic acid: a phase I/II clinical study. Clin Cancer Res. 1998;4(1):61–8.

    CAS  PubMed  Google Scholar 

  19. Heiner J, Miraldi FD, Kallick S, et al. Localization of GD2 specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47:5377–538.

    CAS  PubMed  Google Scholar 

  20. Kailayangiri S, Altvater B, Meltzer J, et al. The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer. 2012;106:1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kramer K, Modak S, Kushner BH, et al. Radioimmunotherapy of metastatic cancer to the central nervous system: phase I study of intrathecal 131I-8H9. Am Assoc Cancer Res. 2007; LB-4. https://www.cancernetwork.com/view/intrathecal-131i-8h9-cns-mets.

  22. Crespo-Jara A, González Manzano R, Lopera Sierra M, et al. A patient with metastatic sarcoma was successfully treated with radiolabeled somatostatin analogs. Clin Nucl Med. 2016;41(9):705–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer. 2006;42:994–1003.

    Article  CAS  PubMed  Google Scholar 

  24. De Visser M, Janssen PJ, Srinivasan A, et al. Stabilized 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging. 2003;30(8):1134–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chung YL, Lee JD, Bang D, et al. Treatment of Bowen’s disease with a specially designed radioactive skin patch. Eur J Nucl Med. 2000;27(7):842–6.

    Article  CAS  PubMed  Google Scholar 

  26. Larson SM, Brown JP, Wright PW, et al. Imaging of melanoma with I-131-labeled monoclonal antibodies. J Nucl Med. 1983;24:123–9.

    CAS  PubMed  Google Scholar 

  27. Weijun W, Ehlerding EB, Lan X, et al. PET and SPECT imaging of melanoma: state of the art. Eur J Nucl Med Mol Imaging. 2018;45(1):132–15.

    Article  CAS  Google Scholar 

  28. Moins N, D’Incan M, Bonafous J, et al. 123I-N-(2diethylaminoethyl)-2-iodobenzamide: a potential imaging agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging. 2002;29:1478–84.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Li M, Zhang Y, Zhang F, Liu C, Song Y, et al. Detection of melanoma metastases with PET-comparison of 18F-5-FPN with 18F-FDG. Nucl Med Biol. 2017;50:33–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kertesz I, Vida A, Nagy G, Emri M, Farkas A, Kis A, et al. In vivo imaging of experimental melanoma tumors using the novel radiotracer 68Ga-NODAGA-procainamide (PCA). J Cancer. 2017;8:774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ware R, Kee D, McArthur G, et al. First human study of N-(2-(diethylamino) ethyl)-6-[F-18]fluoropyridine-3-carboxamide (MEL050). J Nucl Med. 2011;52(Suppl 1):415.

    Google Scholar 

  32. Denoyer D, Potdevin T, Roselt P, et al. Improved detection of regional melanoma metastasis using 18F-6-fluoro-N-[2-(diethylamino)ethyl] pyridine-3carboxamide, a melanin-specific PET probe, by perilesional administration. J Nucl Med. 2011;52:115–22.

    Article  PubMed  Google Scholar 

  33. McQuade P, Miao Y, Yoo J, et al. Imaging of melanoma using 64Cu- and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide analogue of alpha-MSH. J Med Chem. 2005;48:2985–92.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Zhang Z, Lin KS, et al. Preclinical melanoma imaging with 68Ga-labeled alpha-melanocyte-stimulating hormone derivatives using PET. Theranostics. 2017;7:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beer AJ, Haubner R, Goebel M, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46:1333–41.

    CAS  PubMed  Google Scholar 

  36. Flook AM, Yang J, Miao Y. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone peptides. J Med Chem. 2013;56:8793–802.

    Article  CAS  PubMed  Google Scholar 

  37. Flook AM, Yang J, Miao Y. Substitution of the Lys linker with the beta-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptides. J Med Chem. 2014;57:9010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Posey JA, Khazaeli MB, DelGrosso A, et al. A pilot trial of Vitaxin, a humanized anti-Vitronectin receptor (anti alpha v Beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm. 2001;16(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  39. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F] fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med. 2001;42(2):248–56.

    CAS  PubMed  Google Scholar 

  40. Epstude M, Tornquist K, Riklin C, et al. Comparison of (18)F-FDG PET/CT and (68)Ga-DOTATATE PET/CT imaging in metastasized Merkel cell carcinoma. Clin Nucl Med. 2013;38(4):283–4.

    Article  PubMed  Google Scholar 

  41. Valsecchi ME, Coronel M, Intenzo CM, et al. Somatostatin receptor scintigraphy in patients with metastatic uveal melanoma. Melanoma Res. 2013;23(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  42. Long Y, Shao F, Lan X. Mediastinal epithelioid Hemangioendothelioma revealed on 68Ga-DOTATATE PET/CT. Clin Nucl Med. 2020;45(5):414–6.

    Article  PubMed  Google Scholar 

  43. Xin Y, Cai H. Improved radiosynthesis and biological evaluations of L- and D-1-[18F]Fluoroethyl-tryptophan for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. Mol Imaging Biol. 2017;19(4):589–98.

    Article  CAS  PubMed  Google Scholar 

  44. Hettich M, Braun F, Bartholoma MD, et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nedrow JR, Josefsson A, Park S, et al. Imaging of programmed death ligand-1 (PD-L1): impact of protein concentration on distribution of anti-PD-L1 SPECT agent in an immunocompetent melanoma murine model. J Nucl Med. 2017;58(10):1560–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vag T, Gerngross C, Herhaus P, et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57:741–6.

    Article  CAS  PubMed  Google Scholar 

  47. Cobben DC, Jager PL, Elsinga PH, et al. 18F–3-fluoro-3deoxy-L-thymidine: a new tracer or staging of metastatic melanoma? J Nucl Med. 2003;44:1927–32.

    CAS  PubMed  Google Scholar 

  48. Lindholm P, et al. Carbon-11-methionine PET imaging of malignant melanoma. J Nucl Med. 1995;36(10):1806–10.

    CAS  PubMed  Google Scholar 

  49. Unterrainer M, Galldiks N, Suchorska B, et al. 18F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis. J Nucl Med. 2017;58:584–9.

    Article  CAS  PubMed  Google Scholar 

  50. Qin C, Liu H, Chen K, et al. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med. 2014;55:812–7.

    Article  CAS  PubMed  Google Scholar 

  51. Voss SD, Smith SV, DiBartolo N, et al. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A. 2007;104:17489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garin-Chesa P, Beresford HR, Carrato-Mena A, et al. Cell surface molecules of human melanoma. Immunohistochemical analysis of the gp57, GD3 and mel-CSPG antigenic systems. Am J Pathol. 1989;134:295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheung NK, Lazarus H, Miraldi FD, et al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol. 1987;5:1430–40.

    Article  CAS  PubMed  Google Scholar 

  54. Milenic DE, Wong KJ, Baidoo KE, et al. Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm. 2008;23:619–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klein M, Lotem M, Peretz T, et al. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J Skin Cancer. 2013;2013:828329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dadachova E, Revskaya E, Sesay MA, et al. Preclinical evaluation and efficacy studies of a melanin binding IgM antibody labeled with 188 Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008;7:1116–27.

    Article  CAS  PubMed  Google Scholar 

  57. Revskaya E, Jongco AM, Sellers RS, et al. Radioimmunotherapy of experimental human metastatic melanoma with melanin-binding antibodies and in combination with dacarbazine. Clin Cancer Res. 2009;15(7):2373–9.

    Article  CAS  PubMed  Google Scholar 

  58. Joyal JL, Barrett JA, Marquis JC, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Res. 2010;70:4045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Denoyer D, Potdevin T, Roselt P, et al. Improved detection of regional melanoma metastasis using 18 F-6- fluoro-N-[2-(diethylamino)ethyl] pyridine-3-carboxamide, a melanin-speci fi c PET probe, by perilesional administration. J Nucl Med. 2011;52:115–22.

    Article  PubMed  Google Scholar 

  60. Mier W, Kratochwil C, Hassel JC, et al. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med. 2014;55:9–14.

    Article  CAS  PubMed  Google Scholar 

  61. Fujinaga M, Xie L, Yamasaki T, Yui J, et al. Synthesis and evaluation of 4-halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methylbenzamide for imaging of metabotropic glutamate 1 receptor in melanoma. J Med Chem. 2015;58:1513–23.

    Article  CAS  PubMed  Google Scholar 

  62. Froidevaux S, Calame-Christe M, Tanner H, Eberle AN. Melanoma targeting with DOTA-alphamelanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. J Nucl Med. 2005;46:887–95.

    CAS  PubMed  Google Scholar 

  63. Gai Y, Sun L, Hui W, Ouyang Q, et al. New bifunctional chelator p-SCN-PhPr-NE3TA for copper-64: synthesis, peptidomimetic conjugation, radiolabeling, and evaluation for PET imaging. Inorg Chem. 2016;55:6892–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12:1929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Del Conte G, Tosi D, Fasolo A, et al. A phase I trial of antifibronecitin 131I-L19-small immunoprotein (L19-SIP) in solid tumors and lymphoproliferative disease. J Clin Oncol. 2008;26(15_suppl):2575.

    Article  Google Scholar 

  66. Van Essen M, Krenning EP, Kooij PP, et al. Effects of therapy with [177 Lu-DOTA0, Tyr3] octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma and melanoma. J Nucl Med. 2006;47:1599–606.

    PubMed  Google Scholar 

  67. Hou P, Liu D, Ji M, et al. Induction of thyroid gene expression and radioiodine uptake in melanoma cells: novel therapeutic implications. PLoS One. 2009;4:e6200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mishima Y, Ichihashi M, Tsuji M, et al. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound. J Invest Dermatol. 1989;92:321S–5.

    Article  CAS  PubMed  Google Scholar 

  69. Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. twelve-year mortality rates and prognostic factors: COMS report no. 28. Arch Ophthalmol. 2006;124:1684–93.

    Article  Google Scholar 

  70. Hawkins BS. Collaborative ocular melanoma study randomized trial of I-125 brachytherapy. Clin Trials. 2011;8:661–73.

    Article  PubMed  Google Scholar 

  71. Verschueren KM, Creutzberg CL, Schalij-Delfos NE, et al. Long-term outcomes of eye-conserving treatment with ruthenium(106) brachytherapy for choroidal melanoma. Radiother Oncol. 2010;95:332–8.

    Article  PubMed  Google Scholar 

  72. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of (198 Au0) radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine. 2008;4:57–69.

    Article  CAS  PubMed  Google Scholar 

  73. Cianni R, Urigo C, Notarianni E, et al. Radioembolisation using yttrium 90 (Y-90) in patients affected by unresectable hepatic metastases. Radiol Med. 2010;115(4):619–33.

    Article  CAS  PubMed  Google Scholar 

  74. Li Z, Wang YF, Zeng C, Hu L, Liang XJ. Ultrasensitive tyrosinase-activated turn-on near-infrared fluorescent probe with a rationally designed urea bond for selective imaging and photodamage to melanoma cells. Anal Chem. 2018;90(6):3666–9.

    Article  CAS  PubMed  Google Scholar 

  75. Schweiger LF, Smith TA. Fully-automated radiosynthesis and in vitro uptake investigation of [N-methyl-11C]methylene blue. Anticancer Res. 2013;33(10):4267–70.

    CAS  PubMed  Google Scholar 

  76. Link EM. Targeting melanoma with 211At/131I-methylene blue: preclinical and clinical experience. Hybridoma. 1999;18(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  77. Carbajal EF, Baranov SA, Manne VG, et al. Revealing retroperitoneal liposarcoma morphology using optical coherence tomography. J Biomed Opt. 2011;16(2):020502.

    Article  PubMed  Google Scholar 

  78. Davila JR, Mruthyunjaya P. Updates in imaging in ocular oncology. F1000Res. 2019;8:F1000 Faculty Rev-1706.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tsujikawa T, Yamamoto M, Shono K, et al. Assessment of intratumor heterogeneity in mesenchymal uterine tumor by an 18F-FDG PET/CT texture analysis. Ann Nucl Med. 2017;31(10):752–7.

    Article  CAS  PubMed  Google Scholar 

  80. Dittrich D, Pyka T, Scheidhauer K, et al. Textural features in FGD-PET/CT can predict outcome in melanoma patients to treatment with Vemurafenib and Ipilimumab Nuklearmedizin. 2020.

    Google Scholar 

  81. Vallièresa M, Serbana M, Benzyanea I, et al. Investigating the role of functional imaging in the management of soft-tissue sarcomas of the extremities. Phys Imaging Radiat Oncol. 2018;6:53–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikh, A. (2021). Future Directions of PET and Molecular Imaging and Therapy with an Emphasis on Melanoma and Sarcoma. In: Khandani, A.H. (eds) PET/CT and PET/MR in Melanoma and Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-030-60429-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60429-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60428-8

  • Online ISBN: 978-3-030-60429-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics