Skip to main content

Beyond FDG: Novel Radiotracers for PET Imaging of Melanoma and Sarcoma

  • Chapter
  • First Online:
PET/CT and PET/MR in Melanoma and Sarcoma

Abstract

Although metabolic imaging with the PET radiopharmaceutical 2-[18F]fluoro-2-deoxyglucose (FDG) has been successfully used for the evaluation of melanoma and sarcoma, there is interest within the nuclear medicine community in the development of novel PET tracers that would provide additional diagnostic information on these afflictions. Several investigational tracers that bind to specific target sites on tumors have been examined as biomarkers for PET studies of patients with melanoma and sarcoma.

The translation of preclinical research tracers to human-use PET radiopharmaceuticals requires several developmental steps to be accomplished. Production of positron-emitting radionuclides from cyclotrons and generators is discussed, together with robust radiolabeling techniques that can be used for the incorporation of these nuclides into the molecular architecture of radiopharmaceuticals. Comprehensive quality control testing must be performed to assure safety and efficacy and thereby achieve regulatory approval for use of investigational radioactive drugs in human subjects.

Several investigational PET studies of melanoma and sarcoma have been performed using positron-emitting amino acids, hormone receptor ligands, nucleotides, hypoxia radiosensitizers, and tumor receptor-targeting peptides. Differences between these findings and those of FDG-PET encourage further development of new radiopharmaceuticals for PET imaging of unique tumor targets. Such novel radiopharmaceuticals may be synergistic with traditional FDG metabolic imaging, improve our understanding of tumor pathophysiology, and facilitate personalized care of patients with melanoma or sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarntzen EH, Srinivas M, De Wilt JH, Jacobs JF, Lesterhuis WJ, Windhorst AD, de Vries IJ. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci U S A. 2011;108(45):18396–9. https://doi.org/10.1073/pnas.1113045108.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abiko T, Koizumi S, Takanami I. Dual primary subclavicular angiosarcoma and lung cancer imaging with C-11 acetate PET and FDG PET. Clin Nucl Med. 2009;34(5):302–4. https://doi.org/10.1097/RLU.0b013e31819e5242.

    Article  PubMed  Google Scholar 

  3. Alexoff DL. Automation for the radiosynthesis and application of PET radiopharmaceuticals. In: Welch MJ, Redvanly CS, editors. Radiopharmaceutical handbook. Radiochemistry and applications. Chichester: Wiley; 2004. p. 283–306.

    Google Scholar 

  4. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24(4):379–93. https://doi.org/10.1089/cbr.2009.0674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antoni GKT, Langstrom B. Aspects on the synthesis of 11C-labelled compounds. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Radiochemistry and applications. Chichester: Wiley; 2003. p. 141–94.

    Google Scholar 

  6. Becher S, Oskouei S. PET imaging in sarcoma. Orthop Clin North Am. 2015;46(3):409–415, xi. https://doi.org/10.1016/j.ocl.2015.03.001.

    Article  PubMed  Google Scholar 

  7. Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer. 2012;118(12):3135–44. https://doi.org/10.1002/cncr.26630.

    Article  PubMed  Google Scholar 

  8. Bormans G, Buck A, Chiti A, Cooper M, Croasdale J, Desruet M, Windhorst AD. Position statement on radiopharmaceutical production for clinical trials. EJNMMI Radiopharm Chem. 2017;2(1):12. https://doi.org/10.1186/s41181-017-0031-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boschi S, Malizia C, Lodi F. Overview and perspectives on automation strategies in (68)Ga radiopharmaceutical preparations. Recent Results Cancer Res. 2013;194:17–31. https://doi.org/10.1007/978-3-642-27994-2_2.

    Article  CAS  PubMed  Google Scholar 

  10. Brogsitter C, Zophel K, Wunderlich G, Kammerer E, Stein A, Kotzerke J. Comparison between F-18 fluorodeoxyglucose and Ga-68 DOTATOC in metastasized melanoma. Nucl Med Commun. 2013;34(1):47–9. https://doi.org/10.1097/MNM.0b013e32835ae4ed.

    Article  CAS  PubMed  Google Scholar 

  11. Burgers AMG, Wondergem M, van der Zant FM, Knol RJJ. Incidental detection of a melanoma by 18F-Fluorocholine PET/CT performed for evaluation of primary hyperparathyroidism. Clin Nucl Med. 2018;43(4):265–6. https://doi.org/10.1097/RLU.0000000000001972.

    Article  PubMed  Google Scholar 

  12. Cai L, Chen Y, Huang Z, Wu J. Incidental detection of solitary hepatic metastasis by 99mTc-MDP and 18F-NaF PET/CT in a patient with osteosarcoma of the tibia. Clin Nucl Med. 2015;40(9):759–61. https://doi.org/10.1097/RLU.0000000000000769.

    Article  PubMed  Google Scholar 

  13. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Cloughesy T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904–11. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16741298.

    CAS  PubMed  Google Scholar 

  14. Cherry SR, Dahlbom M. PET: physics, instrumentation, and scanners. In: Phelps ME, editor. PET. Molecular imaging and its biological applications. New York: Springer; 2004. p. 1–124.

    Google Scholar 

  15. Chou YH, Ko KY, Cheng MF, Chen WW, Yen RF. 18F-NaF PET/CT images of cardiac metastasis from osteosarcoma. Clin Nucl Med. 2016;41(9):708–9. https://doi.org/10.1097/RLU.0000000000001289.

    Article  PubMed  Google Scholar 

  16. Clark JCA. Chemistry of Nitrogen-13 and Oxygen-15. In: Welch MJRCS, editor. Handbook of radiopharmaceuticals. Radiochemistry and applications. Chichester: Wiley; 2004. p. 119–40.

    Google Scholar 

  17. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ. 3′-18F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med. 2003;44(12):1927–32.

    CAS  PubMed  Google Scholar 

  18. Dadone-Montaudie B, Ambrosetti D, Dufour M, Darcourt J, Almairac F, Coyne J, Burel-Vandenbos F. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PLoS One. 2017;12(9):e0184625. https://doi.org/10.1371/journal.pone.0184625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Decristoforo C, Penuelas I, Patt M, Todde S. European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Q J Nucl Med Mol Imaging. 2017;61(2):135–44. https://doi.org/10.23736/S1824-4785.17.02965-X.

    Article  PubMed  Google Scholar 

  20. Derlin T, Hartung D, Hueper K. 68Ga-DOTA-TATE PET/CT for molecular imaging of somatostatin receptor expression in extra-adrenal paraganglioma in a case of complete carney triad. Clin Nucl Med. 2017a;42(12):e527–8. https://doi.org/10.1097/RLU.0000000000001864.

    Article  PubMed  Google Scholar 

  21. Derlin T, Hueper K, Soudah B. 68Ga-DOTA-TATE PET/CT for molecular imaging of somatostatin receptor expression in metastasizing epithelioid hemangioendothelioma: comparison with 18F-FDG. Clin Nucl Med. 2017b;42(11):e478–9. https://doi.org/10.1097/RLU.0000000000001814.

    Article  PubMed  Google Scholar 

  22. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med. 2001;42(2):248–56. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11216523.

    CAS  PubMed  Google Scholar 

  23. Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, Bares R. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging. 2003;30(10):1407–12. https://doi.org/10.1007/s00259-003-1257-3.

    Article  CAS  PubMed  Google Scholar 

  24. Eary JF, Link JM, Muzi M, Conrad EU, Mankoff DA, White JK, Krohn KA. Multiagent PET for risk characterization in sarcoma. J Nucl Med. 2011;52(4):541–6. https://doi.org/10.2967/jnumed.110.083717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fani M, Andre JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging. 2008;3(2):67–77. https://doi.org/10.1002/cmmi.232.

    Article  CAS  PubMed  Google Scholar 

  26. Geraldo L, Ceci F, Uprimny C, Kendler D, Virgolini I. Detection of sarcomatoid lung metastasis with 68GA-PSMA PET/CT in a patient with prostate cancer. Clin Nucl Med. 2016;41(5):421–2. https://doi.org/10.1097/RLU.0000000000001157.

    Article  PubMed  Google Scholar 

  27. Ghigi G, Micera R, Maffione AM, Castellucci P, Cammelli S, Ammendolia I, Rubello D. 11C-methionine vs. 18F-FDG PET in soft tissue sarcoma patients treated with neoadjuvant therapy: preliminary results. In Vivo. 2009;23(1):105–10. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19368133.

    CAS  PubMed  Google Scholar 

  28. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, Fanti S. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23133801.

    CAS  PubMed  Google Scholar 

  29. Harisankar CN, Mittal BR, Watts A, Bhattacharya A, Sen R. Utility of dynamic perfusion PET using (1)(3)N-ammonia in diagnosis of asymptomatic recurrence of fibrosarcoma. Clin Nucl Med. 2011;36(2):150–1. https://doi.org/10.1097/RLU.0b013e318203be6c.

    Article  PubMed  Google Scholar 

  30. Hasebe M, Yoshikawa K, Nishii R, Kawaguchi K, Kamada T, Hamada Y. Usefulness of (11)C-methionine-PET for predicting the efficacy of carbon ion radiation therapy for head and neck mucosal malignant melanoma. Int J Oral Maxillofac Surg. 2017;46(10):1220–8. https://doi.org/10.1016/j.ijom.2017.04.019.

    Article  CAS  PubMed  Google Scholar 

  31. Hernandez Pinzon J, Mena D, Aguilar M, Biafore F, Recondo G, Bastianello M. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI. Rev Esp Med Nucl Imagen Mol. 2016;35(5):332–5. https://doi.org/10.1016/j.remn.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  32. Inubushi M, Saga T, Koizumi M, Takagi R, Hasegawa A, Koto M, Kamada T. Predictive value of 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography/computed tomography for outcome of carbon ion radiotherapy in patients with head and neck mucosal malignant melanoma. Ann Nucl Med. 2013;27(1):1–10. https://doi.org/10.1007/s12149-012-0652-x.

    Article  CAS  PubMed  Google Scholar 

  33. Jackson T, Mosci C, von Eyben R, Mittra E, Ganjoo K, Biswal S, Iagaru A. Combined 18F-NaF and 18F-FDG PET/CT in the evaluation of sarcoma patients. Clin Nucl Med. 2015;40(9):720–4. https://doi.org/10.1097/RLU.0000000000000845.

    Article  PubMed  Google Scholar 

  34. Jiang L, Wang D, Zhang Y, Li J, Wu Z, Wang Z, Wang D. Investigation of the pro-apoptotic effects of arbutin and its acetylated derivative on murine melanoma cells. Int J Mol Med. 2018;41(2):1048–54. https://doi.org/10.3892/ijmm.2017.3256.

    Article  CAS  PubMed  Google Scholar 

  35. Jones RP, Iagaru A. 18F NaF brain metastasis uptake in a patient with melanoma. Clin Nucl Med. 2014;39(10):e448–50. https://doi.org/10.1097/RLU.0000000000000371.

    Article  PubMed  Google Scholar 

  36. Jordan D. An overview of the ommon technical dossier (CTD) regulatory dossier. Med Writing. 2014;23(2):101–5.

    Article  Google Scholar 

  37. Jung RS, Mittal BR, Bal A, Dey P, Shukla J, Kapoor R. Metastatic melanoma to the thyroid gland expressing somatostatin receptors-imaging with 68Ga-DOTANOC PET/CT. Clin Nucl Med. 2015;40(2):175–6. https://doi.org/10.1097/RLU.0000000000000636.

    Article  PubMed  Google Scholar 

  38. Kebir S, Rauschenbach L, Galldiks N, Schlaak M, Hattingen E, Landsberg J, Glas M. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro-Oncology. 2016;18(10):1462–4. https://doi.org/10.1093/neuonc/now154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kowalsky RJF, Falen SW, editors. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 3rd ed. Washington DC: American Pharmacists Association; 2011.

    Google Scholar 

  40. Lange R, ter Heine R, Decristoforo C, Penuelas I, Elsinga PH, van der Westerlaken MM, Hendrikse NH. Untangling the web of European regulations for the preparation of unlicensed radiopharmaceuticals: a concise overview and practical guidance for a risk-based approach. Nucl Med Commun. 2015;36(5):414–22. https://doi.org/10.1097/MNM.0000000000000276.

    Article  CAS  PubMed  Google Scholar 

  41. Lindholm P, Leskinen S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, Joensuu H. Carbon-11-methionine PET imaging of malignant melanoma. J Nucl Med. 1995;36(10):1806–10. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7562047.

    CAS  PubMed  Google Scholar 

  42. Ma X, Wang S, Wang S, Liu D, Zhao X, Chen H, Cheng Z. Biodistribution, radiation dosimetry, and clinical application of a melanin-targeted PET probe, (18)F-P3BZA, in patients. J Nucl Med. 2019;60(1):16–22. https://doi.org/10.2967/jnumed.118.209643.

    Article  CAS  PubMed  Google Scholar 

  43. Maecke HR, Andre JP. 68Ga-PET radiopharmacy: a generator-based alternative to 18F-radiopharmacy. Ernst Schering Res Found Workshop. 2007;62:215–42. https://doi.org/10.1007/978-3-540-49527-7_8.

    Article  CAS  Google Scholar 

  44. Mena E, Owenius R, Turkbey B, Sherry R, Bratslavsky G, Macholl S, Kurdziel K. [(1)(8)F]fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing alphavbeta 3 and alpha vbeta 5 integrins. Eur J Nucl Med Mol Imaging. 2014;41(10):1879–88. https://doi.org/10.1007/s00259-014-2791-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mena E, Sanli Y, Marcus C, Subramaniam RM. Precision medicine and PET/computed tomography in melanoma. PET Clin. 2017;12(4):449–58. https://doi.org/10.1016/j.cpet.2017.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moerlein SM, Welch MJ. The chemistry of gallium and indium as related to radiopharmaceutical production. Int J Nucl Med Biol. 1981;8(4):277–87. https://doi.org/10.1016/0047-0740(81)90034-6.

    Article  CAS  PubMed  Google Scholar 

  47. Morita T, Kurihara H, Hiroi K, Honda N, Igaki H, Hatazawa J, Itami J. Dynamic changes in (18)F-borono-L-phenylalanine uptake in unresectable, advanced, or recurrent squamous cell carcinoma of the head and neck and malignant melanoma during boron neutron capture therapy patient selection. Radiat Oncol. 2018;13(1):4. https://doi.org/10.1186/s13014-017-0949-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mosessian S, Duarte-Vogel SM, Stout DB, Roos KP, Lawson GW, Jordan MC, Phelps ME. INDs for PET molecular imaging probes-approach by an academic institution. Mol Imaging Biol. 2014;16(4):441–8. https://doi.org/10.1007/s11307-014-0735-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qin C, Hu F, Arnous MMR, Lan X. Detection of non-FDG-avid residual sinonasal malignant melanoma in the skull base with 11C-choline PET and contrast-enhanced MRI. Clin Nucl Med. 2017;42(11):885–6. https://doi.org/10.1097/RLU.0000000000001836.

    Article  PubMed  Google Scholar 

  50. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Krohn KA. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10(7):2245–52.

    Article  CAS  Google Scholar 

  51. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Krohn KA. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30(5):695–704. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12632200.

    Article  CAS  Google Scholar 

  52. Sasikumar A, Joy A, Pillai MRA, Alex TM, Narayanan G. 68Ga-PSMA PET/CT in osteosarcoma in fibrous dysplasia. Clin Nucl Med. 2017;42(6):446–7. https://doi.org/10.1097/RLU.0000000000001646.

    Article  PubMed  Google Scholar 

  53. Schwarz SW, Decristoforo C. US and EU radiopharmaceutical diagnostic and therapeutic nonclinical study requirements for clinical trials authorizations and marketing authorizations. EJNMMI Radiopharm Chem. 2019;4(1):10. https://doi.org/10.1186/s41181-019-0059-2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schwarz SW, Decristoforo C, Goodbody AE, Singhal N, Saliba S, Ruddock P, Ross AA. Harmonization of United States, European Union and Canadian first-in-human regulatory requirements for radiopharmaceuticals-is this possible? J Nucl Med. 2018;60(2):158–66. https://doi.org/10.2967/jnumed.118.209460.

    Article  CAS  Google Scholar 

  55. Seshadri N, Wat J, Balan K. Bilateral adrenal metastases from malignant melanoma: concordant findings on (18)F-FDG and (18)F-FDOPA PET. Eur J Nucl Med Mol Imaging. 2006;33(7):854–5. https://doi.org/10.1007/s00259-006-0101-y.

    Article  PubMed  Google Scholar 

  56. Snyder SEK. Chemistry of Fluorine-18 radiopharmaceuticals. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Radiochemistry and applications. Chichester: Wiley; 2004. p. 195–228.

    Google Scholar 

  57. Sollini M, Pasqualetti F, Perri M, Coraggio G, Castellucci P, Roncali M, Erba PA. Detection of a second malignancy in prostate cancer patients by using [(18)F]Choline PET/CT: a case series. Cancer Imaging. 2016;16(1):27. https://doi.org/10.1186/s40644-016-0085-1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: past, present, and future. Semin Nucl Med. 2016;46(5):373–94. https://doi.org/10.1053/j.semnuclmed.2016.04.003.

    Article  PubMed  Google Scholar 

  59. Suleiman OH, Fejka R, Houn F, Walsh M. The radioactive drug research committee: background and retrospective study of reported research data (1975-2004). J Nucl Med. 2006;47(7):1220–6. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16818959.

    PubMed  Google Scholar 

  60. Tamura K, Yoshikawa K, Ishikawa H, Hasebe M, Tsuji H, Yanagi T, Tsujii H. Carbon-11-methionine PET imaging of choroidal melanoma and the time course after carbon ion beam radiotherapy. Anticancer Res. 2009;29(5):1507–14. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19443358.

    PubMed  Google Scholar 

  61. Teoh EJ, Tsakok MT, Bradley KM, Hyde K, Subesinghe M, Gleeson FV. Recurrent malignant melanoma detected on 18F-Fluciclovine PET/CT imaging for prostate cancer. Clin Nucl Med. 2017;42(10):803–4. https://doi.org/10.1097/RLU.0000000000001789.

    Article  PubMed  Google Scholar 

  62. Tsujikawa T, Yoshida Y, Mori T, Kurokawa T, Fujibayashi Y, Kotsuji F, Okazawa H. Uterine tumors: pathophysiologic imaging with 16alpha-[18F]fluoro-17beta-estradiol and 18F fluorodeoxyglucose PET--initial experience. Radiology. 2008;248(2):599–605. https://doi.org/10.1148/radiol.2482071379.

    Article  PubMed  Google Scholar 

  63. Unterrainer M, Galldiks N, Suchorska B, Kowalew LC, Wenter V, Schmid-Tannwald C, Albert NL. (18)F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis. J Nucl Med. 2017;58(4):584–9. https://doi.org/10.2967/jnumed.116.180075.

    Article  CAS  PubMed  Google Scholar 

  64. Usmani S, Marafi F, Rasheed R, Bakiratharajan D, Al Maraghy M, Al Kandari F. Unsuspected metastases to muscles in osteosarcoma detected on 18F-sodium fluoride PET-CT. Clin Nucl Med. 2018;43(9):e343–5. https://doi.org/10.1097/RLU.0000000000002191.

    Article  PubMed  Google Scholar 

  65. Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP, Schwaiger M. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57(5):741–6. https://doi.org/10.2967/jnumed.115.161034.

    Article  CAS  PubMed  Google Scholar 

  66. Velikyan I. Prospective of (6)(8)Ga-radiopharmaceutical development. Theranostics. 2013;4(1):47–80. https://doi.org/10.7150/thno.7447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verbruggen A, Coenen HH, Deverre JR, Guilloteau D, Langstrom B, Salvadori PA, Halldin C. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging. 2008;35(11):2144–51. https://doi.org/10.1007/s00259-008-0853-7.

    Article  CAS  PubMed  Google Scholar 

  68. Verma P, Purandare N, Agrawal A, Shah S, Rangarajan V. Unusual finding of a tumor thrombus arising from osteosarcoma detected on 18F-NaF PET/CT. Clin Nucl Med. 2016;41(6):e304–6. https://doi.org/10.1097/RLU.0000000000001174.

    Article  PubMed  Google Scholar 

  69. Yamamoto M, Tsujikawa T, Yamada S, Kurokawa T, Shinagawa A, Chino Y, Yoshida Y. 18F-FDG/18F-FES standardized uptake value ratio determined using PET predicts prognosis in uterine sarcoma. Oncotarget. 2017;8(14):22581–9. https://doi.org/10.18632/oncotarget.15127.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yoshida Y, Kiyono Y, Tsujikawa T, Kurokawa T, Okazawa H, Kotsuji F. Additional value of 16alpha-[18F]fluoro-17beta-oestradiol PET for differential diagnosis between uterine sarcoma and leiomyoma in patients with positive or equivocal findings on [18F]fluorodeoxyglucose PET. Eur J Nucl Med Mol Imaging. 2011;38(10):1824–31. https://doi.org/10.1007/s00259-011-1851-8.

    Article  CAS  PubMed  Google Scholar 

  71. Zanoni L, Lopci E, Ambrosini V, Boschi S, Fanti S. Alveolar rhabdomyosarcoma with neuroendocrine differentiation detected by Ga-68 DOTA-NOC PET/CT: a case report. Clin Nucl Med. 2011;36(10):915–8. https://doi.org/10.1097/RLU.0b013e31821a2691.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Moerlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moerlein, S.M., Schwarz, S.W., Dehdashti, F. (2021). Beyond FDG: Novel Radiotracers for PET Imaging of Melanoma and Sarcoma. In: Khandani, A.H. (eds) PET/CT and PET/MR in Melanoma and Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-030-60429-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60429-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60428-8

  • Online ISBN: 978-3-030-60429-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics