Skip to main content

A New Approach for Making Use of Negative Learning in Ant Colony Optimization

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12421)

Abstract

The overwhelming majority of ant colony optimization approaches from the literature is exclusively based on learning from positive examples. Natural examples from biology, however, indicate the potential usefulness of negative learning. Several research works have explored this topic over the last two decades in the context of ant colony optimization, with limited success. In this work we present an alternative proposal for the incorporation of negative learning in ant colony optimization. The results obtained for the capacitated minimum dominating set problem indicate that this approach can be quite useful. More specifically, our extended ant colony algorithm clearly outperforms the standard approach. Moreover, we were able to improve the current state-of-the-art results in 10 out of 36 cases.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-60376-2_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-60376-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. Syst. Man Cybern. Part B 34(2), 1161–1172 (2004)

    CrossRef  Google Scholar 

  2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    CrossRef  Google Scholar 

  3. Calvo, B., Santafé, G.: scmamp: statistical comparison of multiple algorithms in multiple problems. R J. 8(1) (2016)

    Google Scholar 

  4. Cordón, O., Fernández de Viana, I., Herrera, F., Moreno, L.: A new ACO model integrating evolutionary computation concepts: the best-worst ant system. In: Proceedings of ANTS 2000 - Second International Workshop on Ant Algorithms, pp. 22–29 (2000)

    Google Scholar 

  5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    CrossRef  Google Scholar 

  6. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management ScienceInternational Series in Operations Research & Management Science, vol. 272, pp. 311–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_10

    CrossRef  Google Scholar 

  7. García, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  8. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_25

    CrossRef  Google Scholar 

  9. López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  CrossRef  Google Scholar 

  10. Malisia, A.R., Tizhoosh, H.R.: Applying opposition-based ideas to the ant colony system. In: 2007 IEEE Swarm Intelligence Symposium, pp. 182–189. IEEE press (2007)

    Google Scholar 

  11. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

    MathSciNet  CrossRef  Google Scholar 

  12. Montgomery, J., Randall, M.: Anti-pheromone as a tool for better exploration of search space. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 100–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45724-0_9

    CrossRef  Google Scholar 

  13. Pinacho-Davidson, P., Bouamama, S., Blum, C.: Application of CMSA to the minimum capacitated dominating set problem. In: Proceedings of GECCO 2019 - The Genetic and Evolutionary Computation Conference, pp. 321–328. ACM, New York (2019)

    Google Scholar 

  14. Potluri, A., Singh, A.: Metaheuristic algorithms for computing capacitated dominating set with uniform and variable capacities. Swarm Evol. Comput. 13, 22–33 (2013)

    CrossRef  Google Scholar 

  15. Robinson, E.J.H., Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: ‘No entry’ signal in ant foraging. Nature 438(7067), 442 (2005)

    CrossRef  Google Scholar 

  16. Rojas-Morales, N., Riff, M.-C., Coello Coello, C.A., Montero, E.: A cooperative opposite-inspired learning strategy for ant-based algorithms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 317–324. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_25

    CrossRef  Google Scholar 

  17. Schlein, Y., Galun, R., Ben-Eliahu, M.N.: Abstinons - male-produced deterrents of mating in flies. J. Chem. Ecol. 7(2), 285–290 (1981)

    CrossRef  Google Scholar 

  18. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load balancing in telecommunications networks. Adapt. Behav. 5(2), 169–207 (1997)

    CrossRef  Google Scholar 

  19. Simons, C., Smith, J.: Exploiting antipheromone in ant colony optimisation for interactive search-based software design and refactoring. In: Proceedings of GECCO 2016 - Genetic and Evolutionary Computation Conference Companion, pp. 143–144. ACM (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by project CI-SUSTAIN funded by the Spanish Ministry of Science and Innovation (PID2019-104156GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teddy Nurcahyadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Nurcahyadi, T., Blum, C. (2020). A New Approach for Making Use of Negative Learning in Ant Colony Optimization. In: , et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)