Skip to main content

Memory Induced Aggregation in Collective Foraging

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

Foraging for resources is critical to the survival of many animal species. When resources are scarce, individuals can benefit from interactions, effectively parallelizing the search process. Moreover, communication between conspecifics can result in aggregation around salient patches, rich in resources. However, individual foragers often have short communication ranges relative to the scale of the environment. Hence, formation of a global, collective memory is difficult since information transfer between foragers is suppressed. Despite this limitation, individual motion can enhance information transfer, and thus enable formation of a collective memory. In this work, we study the effect of individual motion on the aggregation characteristics of a collective system of foragers during collective foraging. Using an agent-based model, we show that aggregation around salient patches can occur through formation of collective memory realized through local interactions and global displacement using Lévy walks. We show that the Lévy parameter that defines individual dynamics, and a decision parameter that defines the balance between exploration and exploitation, greatly influences the macroscopic aggregation characteristics. When individuals prefer exploration, global aggregation around a single patch occurs when explorative bouts are relatively short. In contrast, when individuals tend to exploit the collective memory, explorative bouts should be longer for global aggregation to occur. Local aggregation emerges when exploration is suppressed, regardless of the value of the decision parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The masses of each forager are equal and hence can be omitted.

  2. 2.

    Computation of this expected value assumes a uniform distribution with the center of mass located at the center of the environment \(\mathbf {c} = (L/2,L/2)\).

References

  1. Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theoret. Comput. Sci. 410(19), 1876–1902 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bartumeus, F., Campos, D., Ryu, W.S., Lloret-Cabot, R., Méndez, V., Catalan, J.: Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol. Lett. 19(11), 1299–1313 (2016)

    Article  Google Scholar 

  3. Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)

    Article  Google Scholar 

  4. Bennati, S.: On the role of collective sensing and evolution in group formation. Swarm Intell. 12(4), 267–282 (2018). https://doi.org/10.1007/s11721-018-0156-y

    Article  Google Scholar 

  5. Bhattacharya, K., Vicsek, T.: Collective foraging in heterogeneous landscapes. J. Roy. Soc. Interface 11(100), 20140674 (2014)

    Article  Google Scholar 

  6. Boyer, D., Falcón-Cortés, A., Giuggioli, L., Majumdar, S.N.: Anderson-like localization transition of random walks with resetting. J. Stat. Mech. Theory Exp. 2019(5), 053204 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bracis, C., Gurarie, E., Van Moorter, B., Goodwin, R.A.: Memory effects on movement behavior in animal foraging. PloS One 10(8), e0136057 (2015)

    Article  Google Scholar 

  8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  9. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  Google Scholar 

  10. Danchin, E., Giraldeau, L.A., Valone, T.J., Wagner, R.H.: Public information: from nosy neighbors to cultural evolution. Science 305(5683), 487–491 (2004)

    Article  Google Scholar 

  11. De Fine Licht, H.H., Boomsma, J.J.: Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecol. Entomol. 35(3), 259–269 (2010)

    Article  Google Scholar 

  12. Fagan, W.F., et al.: Spatial memory and animal movement. Ecol. Lett. 16(10), 1316–1329 (2013)

    Article  Google Scholar 

  13. Falcón-Cortés, A., Boyer, D., Ramos-Fernández, G.: Collective learning from individual experiences and information transfer during group foraging. J. Roy. Soc. Interface 16(151), 20180803 (2019)

    Article  Google Scholar 

  14. Faustino, C., Lyra, M., Raposo, E., Viswanathan, G., da Luz, M.: The universality class of random searches in critically scarce environments. EPL (Europhys. Lett.) 97(5), 50005 (2012)

    Article  Google Scholar 

  15. Ferreira, A., Raposo, E., Viswanathan, G., Da Luz, M.: The influence of the environment on Lévy random search efficiency: fractality and memory effects. Physica A 391(11), 3234–3246 (2012)

    Article  Google Scholar 

  16. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  17. Haney, J.C., Fristrup, K.M., Lee, D.S.: Geometry of visual recruitment by seabirds to ephemeral foraging flocks. Ornis Scand. 23, 49–62 (1992)

    Article  Google Scholar 

  18. Katz, K., Naug, D.: Energetic state regulates the exploration-exploitation trade-off in honeybees. Behav. Ecol. 26(4), 1045–1050 (2015)

    Article  Google Scholar 

  19. Kéfi, S., et al.: Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems. Nature 449(7159), 213 (2007)

    Article  Google Scholar 

  20. Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C.: Scale invariance in natural and artificial collective systems: a review. J. Roy. Soc. Interface 14(136), 20170662 (2017)

    Article  Google Scholar 

  21. Jimenez-Delgado, G., Balmaceda-Castro, N., Hernández-Palma, H., de la Hoz-Franco, E., García-Guiliany, J., Martinez-Ventura, J.: An integrated approach of multiple correspondences analysis (MCA) and fuzzy AHP method for occupational health and safety performance evaluation in the land cargo transportation. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 433–457. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_32

    Chapter  Google Scholar 

  22. Khaluf, Y., Simoens, P., Hamann, H.: The neglected pieces of designing collective decision-making processes. Front. Robot. AI 6, 16 (2019)

    Article  Google Scholar 

  23. Khaluf, Y., Van Havermaet, S., Simoens, P.: Collective Lévy walk for efficient exploration in unknown environments. In: Agre, G., van Genabith, J., Declerck, T. (eds.) AIMSA 2018. LNCS (LNAI), vol. 11089, pp. 260–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99344-7_24

    Chapter  Google Scholar 

  24. Levin, S.A.: Multiple scales and the maintenance of biodiversity. Ecosystems 3(6), 498–506 (2000). https://doi.org/10.1007/s100210000044

    Article  Google Scholar 

  25. Lihoreau, M., et al.: Collective foraging in spatially complex nutritional environments. Philos. Trans. Roy. Soc. B 372(1727), 20160238 (2017)

    Article  Google Scholar 

  26. Lusseau, D., Newman, M.E.: Identifying the role that animals play in their social networks. Proc. R. Soc. Lond. B Biol. Sci. 271(suppl\_6), S477–S481 (2004)

    Google Scholar 

  27. Martínez-García, R., Calabrese, J.M., López, C.: Optimal search in interacting populations: Gaussian jumps versus Lévy flights. Phys. Rev. E 89(3), 032718 (2014)

    Article  Google Scholar 

  28. Martínez-García, R., Calabrese, J.M., Mueller, T., Olson, K.A., López, C.: Optimizing the search for resources by sharing information: Mongolian gazelles as a case study. Phys. Rev. Lett. 110(24), 248106 (2013)

    Article  Google Scholar 

  29. Menzel, R., et al.: Honey bees navigate according to a map-like spatial memory. Proc. Nat. Acad. Sci. 102(8), 3040–3045 (2005)

    Article  Google Scholar 

  30. Nauta, J., Khaluf, Y., Simoens, P.: Hybrid foraging in patchy environments using spatial memory. J. Roy. Soc. Interface 17(166), 20200026 (2020)

    Article  Google Scholar 

  31. Pemantle, R., et al.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MathSciNet  Google Scholar 

  32. Pinter-Wollman, N., et al.: Harvester ants use interactions to regulate forager activation and availability. Animal Behav. 86(1), 197–207 (2013)

    Article  Google Scholar 

  33. Pinter-Wollman, N., et al.: The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav. Ecol. 25(2), 242–255 (2014)

    Article  Google Scholar 

  34. Pitcher, T., Magurran, A., Winfield, I.: Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10(2), 149–151 (1982). https://doi.org/10.1007/BF00300175

    Article  Google Scholar 

  35. Pyke, G.H.: Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 6(1), 1–16 (2015)

    Article  Google Scholar 

  36. Ramos-Fernández, G.: Vocal communication in a fission-fusion society: do spider monkeys stay in touch with close associates? Int. J. Primatol. 26(5), 1077–1092 (2005). https://doi.org/10.1007/s10764-005-6459-z

    Article  Google Scholar 

  37. Ramos-Fernández, G., Boyer, D., Aureli, F., Vick, L.G.: Association networks in spider monkeys (Ateles geoffroyi). Behav. Ecol. Sociobiol. 63(7), 999–1013 (2009). https://doi.org/10.1007/s00265-009-0719-4

    Article  Google Scholar 

  38. Raposo, E.P., Buldyrev, S.V., da Luz, M.G.E., Santos, M.C., Stanley, H.E., Viswanathan, G.M.: Dynamical robustness of Lévy search strategies. Phys. Rev. Lett. 91, 240601 (2003)

    Article  Google Scholar 

  39. Rausch, I., Khaluf, Y., Simoens, P.: Scale-free features in collective robot foraging. Appl. Sci. 9(13), 2667 (2019)

    Article  Google Scholar 

  40. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerging from decentralised balancing of social feedback and noise. Swarm Intell. 13(3–4), 321–345 (2019). https://doi.org/10.1007/s11721-019-00173-y

    Article  Google Scholar 

  41. Rodrigues, M.A., et al.: Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015)

    Article  Google Scholar 

  42. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active Brownian particles. Eur. Phys. J. Spec. Top. 202(1), 1–162 (2012). https://doi.org/10.1140/epjst/e2012-01529-y

    Article  Google Scholar 

  43. Schafer, R.J., Holmes, S., Gordon, D.M.: Forager activation and food availability in harvester ants. Animal Behav. 71(4), 815–822 (2006)

    Article  Google Scholar 

  44. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A., Reina, A.: Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm Intell. 14(1), 25–56 (2020). https://doi.org/10.1007/s11721-019-00176-9

    Article  Google Scholar 

  45. Torney, C.J., Berdahl, A., Couzin, I.D.: Signalling and the evolution of cooperative foraging in dynamic environments. PLoS Comput. Biol. 7(9), e1002194 (2011)

    Google Scholar 

  46. Visscher, P.K.: Group decision making in nest-site selection among social insects. Annu. Rev. Entomol. 52(1), 255–275 (2007)

    Article  Google Scholar 

  47. Viswanathan, G.M., Da Luz, M.G., Raposo, E.P., Stanley, H.E.: The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  48. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911 (1999)

    Article  Google Scholar 

  49. Weimerskirch, H.: Are seabirds foraging for unpredictable resources? Deep Sea Res. Part II 54(3), 211–223 (2007)

    Article  Google Scholar 

  50. Wosniack, M.E., Santos, M.C., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.E.: Robustness of optimal random searches in fragmented environments. Phys. Rev. E 91, 052119 (2015)

    Article  Google Scholar 

  51. Wosniack, M.E., Santos, M.C., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.: The evolutionary origins of Lévy walk foraging. PLoS Comput. Biol. 13(10), e1005774 (2017)

    Article  Google Scholar 

  52. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)

    Article  Google Scholar 

  53. Zhao, K., et al.: Optimal Lévy-flight foraging in a finite landscape. J. Roy. Soc. Interface 12(104), 20141158 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ilja Rausch for useful discussions and providing invaluable resources specific to the domain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Nauta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nauta, J., Simoens, P., Khaluf, Y. (2020). Memory Induced Aggregation in Collective Foraging. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics