Skip to main content

Abstract

Many atlases used for brain parcellation are hierarchically organised, progressively dividing the brain into smaller sub-regions. However, state-of-the-art parcellation methods tend to ignore this structure and treat labels as if they are ‘flat’. We introduce a hierarchically-aware brain parcellation method that works by predicting the decisions at each branch in the label tree. We further show how this method can be used to model uncertainty separately for every branch in this label tree. Our method exceeds the performance of flat uncertainty methods, whilst also providing decomposed uncertainty estimates that enable us to obtain self-consistent parcellations and uncertainty maps at any level of the label hierarchy. We demonstrate a simple way these decision-specific uncertainty maps may be used to provided uncertainty-thresholded tissue maps at any level of the label tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whole-brain segmentation protocol. http://neuromorphometrics.com/Seg/

  2. Cardoso, M.J., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert, D., Ourselin, S.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015)

    Article  Google Scholar 

  3. Demyanov, S., et al.: Tree-loss function for training neural networks on weakly-labelled datasets. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 287–291. IEEE (2017)

    Google Scholar 

  4. Eaton-Rosen, Z., Bragman, F., Bisdas, S., Ourselin, S., Cardoso, M.J.: Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 691–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_78

    Chapter  Google Scholar 

  5. Han, S., Carass, A., Prince, J.L.: Hierarchical parcellation of the cerebellum. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 484–491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_54

    Chapter  Google Scholar 

  6. Hu, H., Zhou, G.T., Deng, Z., Liao, Z., Mori, G.: Learning structured inference neural networks with label relations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2960–2968 (2016)

    Google Scholar 

  7. Isensee, F., Petersen, J., Kohl, S.A.A., Jäger, P.F., Maier-Hein, K.H.: nnU-net: breaking the spell on successful medical image segmentation (2019)

    Google Scholar 

  8. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  9. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Landman, B., Warfield, S.: MICCAI 2012 workshop on multi-atlas labeling. In: Medical Image Computing and Computer Assisted Intervention Conference (2012)

    Google Scholar 

  12. Liang, X., Zhou, H., Xing, E.: Dynamic-structured semantic propagation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 752–761 (2018)

    Google Scholar 

  13. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  15. Wang, G., Li, W., Vercauteren, T., Ourselin, S.: Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front. Comput. Neurosci. 13, 56 (2019)

    Article  Google Scholar 

  16. Wu, C., Tygert, M., LeCun, Y.: A hierarchical loss and its problems when classifying non-hierarchically. PLoS ONE 14(12), e0226222 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Graham .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 183 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graham, M.S. et al. (2020). Hierarchical Brain Parcellation with Uncertainty. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science(), vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60365-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60364-9

  • Online ISBN: 978-3-030-60365-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics