Skip to main content

The NuSTAR Local AGN \(N_{\mathrm {H}}\) Distribution Survey: Prospects for Mitigating Obscuration Bias in Local AGN Selection

  • Chapter
  • First Online:
  • 228 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we aim to derive a sample of AGN that is selected representatively of their circumnuclear obscuration. Our motivation lies in the ability of such a sample to probe the true column density distribution in the local Universe—a vital boundary constraint for AGN evolutionary models. Specifically, we wish to derive a survey strategy capable of sampling AGN in a way that is more representative than X-ray flux-limited selection, especially in the extreme \(N_{\mathrm {H}}\) regime. As described in Sect. 1.4, complementary methodologies exist to do this, and in Sect. 4.1, I outline the optimum strategy we employ.

All my life I’ve had one dream – to achieve my many goals

– Homer Simpson

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Matched to IRAS 03462+2521 on simbad.

  2. 2.

    \(F_{\nu }\propto \nu ^{-\alpha }\), where \(F_{\nu }\) is the flux density, \(\nu \) is the frequency and \(\alpha \) is the spectral index.

  3. 3.

    For future work into this sample, the lower bound on blue spectra is not necessary since we require optical spectroscopy of each source ultimately. For this reason, in Chap. 6, I discuss an ongoing effort to re-derive the warm IRAS sample without applying a lower bound to the colour cut.

  4. 4.

    7% of the sources classified as Type 2 AGN have no reported line ratios in de Grijp et al. [16]. We confirmed all of these to have corroborating classifications in other literature publications.

  5. 5.

    These sources, as well as a subset of the optically classified sources with line flux limits and H ii galaxies presented in de Grijp et al. [16] are the targets of an ongoing optical followup campaign primarily at the Palomar Observatory.

  6. 6.

    Neutral \(N_{\mathrm {H}}\) were preferentially selected over warm absorber \(N_{\mathrm {H}}\) found for a subset of the sources, since the spectral curvature associated with warm absorption is typically minimal in contrast with neutral \(N_{\mathrm {H}}\), despite depending on the ionisation state and covering of the obscurer.

  7. 7.

    The final 8 sources have been targeted as part of dedicated NuSTAR observations, but were also not detected in the 70-month Swift/BAT catalog.

References

  1. Agostino CJ, Salim S (2018) Crossing the line: active Galactic nuclei in the star-forming region of the BPT diagram

    Google Scholar 

  2. Ananna TT, Treister E, Urry CM, Ricci C, Kirkpatrick A, LaMassa S, Buchner J, Civano F, Tremmel M, Marchesi S (2019) The accretion history of AGNs. I. Supermassive black hole population Synthesis Model. ApJ, 871:240

    Google Scholar 

  3. Annuar A, Alexander DM, Gandhi P, Lansbury GB, Asmus D, Balokovic M, Ballantyne DR, Bauer FE, Boorman PG, Brandt WN, Brightman M, Chen CTJ, Del Moro A, Farrah D, Harrison FA, Koss MJ, Lanz L, Marchesi S, Masini A, Nardini E, Ricci C, Stern D, Zappacosta L (2020) \(NuSTAR\) Observations of four nearby X-ray faint AGN: low luminosity or heavy obscuration? https://doi.org/10.1093/mnras/staa1820

  4. Asmus D, Gandhi P, Hönig SF, Smette A, Duschl WJ (2015) The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation. MNRAS 454:766–803

    Google Scholar 

  5. Assef RJ, Kochanek CS, Brodwin M, Cool R, Forman W, Gonzalez AH, Hickox RC, Jones C, Le Floc’h E, Moustakas J, Murray SS, Stern D (2010) Low-resolution spectral templates for active galactic nuclei and galaxies from 0.03 to 30 \(\mu \)m. ApJ 713:970–985

    Article  ADS  Google Scholar 

  6. Assef RJ, Stern D, Noirot G, Jun HD, Cutri RM, Eisenhardt PRM (2018) The WISE AGN Catalog. ApJS 234:23

    Google Scholar 

  7. Baldwin JA, Phillips MM, Terlevich R (1981) Classification parameters for the emission-line spectra of extragalactic objects. PASP 93:5–19

    Article  ADS  Google Scholar 

  8. Baloković M, Harrison FA, Stern D, Boggs SE, Christensen FE, Craig WW, Grefenstette BW, Hailey CJ, Zhang WW (in prep.) The nustar-swift/bat legacy survey: Sy ii sample definition and phenomenology. ApJ

    Google Scholar 

  9. Beichman CA, Neugebauer G, Habing HJ, Clegg PE, Chester TJ (eds) (1988) Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement, vol 1

    Google Scholar 

  10. Brandt WN, Alexander DM (2015) Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. A&A Rev 23:1

    Google Scholar 

  11. Buchner J, Georgakakis A, Nandra K, Brightman M, Menzel M-L, Liu Z, Hsu L-T, Salvato M, Rangel C, Aird J, Merloni A, Ross N (2015) Obscuration-dependent evolution of active galactic nuclei. ApJ 802:89

    Article  ADS  Google Scholar 

  12. Burlon D, Ajello M, Greiner J, Comastri A, Merloni A, Gehrels N (2011) Three-year swift-BAT survey of active galactic nuclei: reconciling theory and observations? ApJ 728:58

    Article  ADS  Google Scholar 

  13. Comastri A, Gilli R, Marconi A, Risaliti G, Salvati M (2015) Mass without radiation: heavily obscured AGNs, the X-ray background, and the black hole mass density. A & A 574:L10

    Article  ADS  Google Scholar 

  14. Comastri A, Setti G, Zamorani G, Hasinger G (1995) The contribution of AGNs to the X-ray background. A & A 296:1

    ADS  Google Scholar 

  15. Dale DA, Helou G, Contursi A, Silbermann NA, Kolhatkar S (2001) The infrared spectral energy distribution of normal star-forming galaxies. ApJ 549:215–227

    Article  ADS  Google Scholar 

  16. de Grijp MHK, Keel WC, Miley GK, Goudfrooij P, Lub J (1992) Warm IRAS sources. II - Optical spectroscopy of objects from the point source catalog. A&AS 96:389–428

    ADS  Google Scholar 

  17. de Grijp MHK, Lub J, Miley GK (1987) Warm IRAS sources. I. A. catalogue of AGN candidates from the point source catalog. A&AS 70:95–114

    ADS  Google Scholar 

  18. de Grijp MHK, Miley GK, Lub J, de Jong T (1985) Infrared seyferts - a new population of active galaxies? Nature 314:240–242

    Article  ADS  Google Scholar 

  19. Gandhi P, Fabian AC (2003) X-ray background synthesis: the infrared connection. MNRAS 339:1095–1102

    Article  ADS  Google Scholar 

  20. Gandhi P, Yamada S, Ricci C, Asmus D, Mushotzky RF, Ueda Y, Terashima Y, La Parola V (2015) A Compton-thick AGN in the barred spiral galaxy NGC 4785. MNRAS 449:1845–1855

    Article  ADS  Google Scholar 

  21. Gehrels N (1986) Confidence limits for small numbers of events in astrophysical data. ApJ 303:336–346

    Article  ADS  Google Scholar 

  22. Giacconi R, Gursky H, Paolini FR, Rossi BB (1962) Evidence for x Rays from sources outside the solar system. Phys Rev Lett 9:439–443

    Article  ADS  Google Scholar 

  23. Gilli R, Comastri A, Hasinger G (2007) The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. A & A 463:79–96

    Article  ADS  Google Scholar 

  24. Hao H, Elvis M, Civano F, Lanzuisi G, Brusa M, Lusso E, Zamorani G, Comastri A, Bongiorno A, Impey CD, Koekemoer AM, Le Floc’h E, Salvato M, Sanders D, Trump JR, Vignali C (2010) Hot-dust-poor type 1 active galactic nuclei in the COSMOS survey. ApJ 724:L59–L63

    Article  ADS  Google Scholar 

  25. Heckman TM (1980) An optical and radio survey of the nuclei of bright galaxies - Activity in normal galactic nuclei. A & A 87:152–164

    ADS  Google Scholar 

  26. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  MathSciNet  Google Scholar 

  27. Keel WC, de Grijp MHK, Miley GK, Zheng W (1994) Warm IRAS sources from the point source catalog - part three - emission line properties correlations and AGN/active galactic nuclei/unified models. A & A 283:791

    ADS  Google Scholar 

  28. Masini A, Civano F, Comastri A, Fornasini F, Ballantyne DR, Lansbury GB, Treister E, Alexander DM, Boorman PG, Brandt WN, Farrah D, Gandhi P, Harrison FA, Hickox RC, Kocevski DD, Lanz L, Marchesi S, Puccetti S, Ricci C, Saez C, Stern D, Zappacosta L (2018) The NuSTAR extragalactic surveys: source catalog and the compton-thick fraction in the UDS field. ApJS 235:17

    Article  ADS  Google Scholar 

  29. Mateos S, Alonso-Herrero A, Carrera FJ, Blain A, Watson MG, Barcons X, Braito V, Severgnini P, Donley JL, Stern D (2012) Using the Bright Ultrahard XMM-Newton survey to define an IR selection of luminous AGN based on WISE colours. MNRAS 426:3271–3281

    Article  ADS  Google Scholar 

  30. Moran EC, Filippenko AV, Chornock R (2002) "Hidden" Seyfert 2 galaxies and the X-ray background. ApJ 579:L71–L74

    Article  ADS  Google Scholar 

  31. Mullaney JR, Alexander DM, Goulding AD, Hickox RC (2011) Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies. MNRAS 414:1082–1110

    Article  ADS  Google Scholar 

  32. Mushotzky RF, Cowie LL, Barger AJ, Arnaud KA (2000) Resolving the extragalactic hard X-ray background. Nature 404:459–464

    Article  ADS  Google Scholar 

  33. Neugebauer G, Habing HJ, van Duinen R, Aumann HH, Baud B, Beichman CA, Beintema DA, Boggess N, Clegg PE, de Jong T, Emerson JP, Gautier TN, Gillett FC, Harris S, Hauser MG, Houck JR, Jennings RE, Low FJ, Marsden PL, Miley G, Olnon FM, Pottasch SR, Raimond E, Rowan-Robinson M, Soifer BT, Walker RG, Wesselius PR, Young E (1984) The Infrared Astronomical Satellite (IRAS) mission. ApJ 278:L1–L6

    Article  ADS  Google Scholar 

  34. Oh K, Koss M, Markwardt CB, Schawinski K, Baumgartner WH, Barthelmy SD, Cenko SB, Gehrels N, Mushotzky R, Petulante A, Ricci C, Lien A, Trakhtenbrot B (2018) The 105-month swift-BAT all-sky hard X-ray survey. ApJS 235:4

    Article  ADS  Google Scholar 

  35. Polletta M, Tajer M, Maraschi L, Trinchieri G, Lonsdale CJ, Chiappetti L, Andreon S, Pierre M, Le Fèvre O, Zamorani G, Maccagni D, Garcet O, Surdej J, Franceschini A, Alloin D, Shupe DL, Surace JA, Fang F, Rowan-Robinson M, Smith HE, Tresse L (2007) Spectral energy distributions of hard x-ray selected active galactic nuclei in the XMM-Newton Medium deep survey. ApJ 663:81–102

    Article  ADS  Google Scholar 

  36. Ramos Almeida C, Ricci C (2017) Nuclear obscuration in active galactic nuclei. Nat Astron 1:679–689

    Article  ADS  Google Scholar 

  37. Ricci C, Trakhtenbrot B, Koss MJ, Ueda Y, Del Vecchio I, Treister E, Schawinski K, Paltani S, Oh K, Lamperti I, Berney S, Gandhi P, Ichikawa K, Bauer FE, Ho LC, Asmus D, Beckmann V, Soldi S, Baloković M, Gehrels N, Markwardt CB (2017) BAT AGN spectroscopic survey. V. X-ray properties of the Swift/BAT 70-month AGN catalog. ApJS 233:17

    Google Scholar 

  38. Ricci C, Ueda Y, Koss MJ, Trakhtenbrot B, Bauer FE, Gandhi P (2015) Compton-thick accretion in the local universe. ApJ 815:L13

    Article  ADS  Google Scholar 

  39. Setti G, Woltjer L (1989) Active galactic nuclei and the spectrum of the X-ray background. A & A 224:L21–L23

    ADS  Google Scholar 

  40. Stern D, Assef RJ, Benford DJ, Blain A, Cutri R, Dey A, Eisenhardt P, Griffith RL, Jarrett TH, Lake S, Masci F, Petty S, Stanford SA, Tsai C-W, Wright EL, Yan L, Harrison F, Madsen K (2012) Mid-infrared selection of active galactic nuclei with the wide-field infrared survey explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. ApJ 753:30

    Google Scholar 

  41. Treister E, Urry CM, Virani S (2009) The space density of compton-thick active galactic nucleus and the x-ray background. ApJ 696:110–120

    Article  ADS  Google Scholar 

  42. Ueda Y, Akiyama M, Hasinger G, Miyaji T, Watson MG (2014) Toward the standard population synthesis model of the x-ray background: evolution of x-ray luminosity and absorption functions of active galactic nuclei including compton-thick populations. ApJ 786:104

    Article  ADS  Google Scholar 

  43. Veilleux S, Osterbrock DE (1987) Spectral classification of emission-line galaxies. ApJS 63:295–310

    Google Scholar 

  44. Véron-Cetty M-P, Véron P (2010) A catalogue of quasars and active nuclei: 13th edition. A & A 518:A10

    Google Scholar 

  45. Villarroel B, Nyholm A, Karlsson T, Comerón S, Korn AJ, Sollerman J, Zackrisson E (2017) AGN luminosity and stellar age: two missing ingredients for AGN unification as seen with iPTF supernovae. ApJ 837:110

    Article  ADS  Google Scholar 

  46. Zou F, Yang G, Brandt WN, Xue Y (2019) The host-galaxy properties of type 1 versus type 2 active galactic nuclei. https://doi.org/10.3847/1538-4357/ab1eb1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Boorman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boorman, P. (2021). The NuSTAR Local AGN \(N_{\mathrm {H}}\) Distribution Survey: Prospects for Mitigating Obscuration Bias in Local AGN Selection. In: The Accretion and Obscured Growth of Supermassive Black Holes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-60361-8_4

Download citation

Publish with us

Policies and ethics