Skip to main content

Automated Detection of Congenital Heart Disease in Fetal Ultrasound Screening

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline for automated data curation and classification. During both training and inference, we exploit an auxiliary view classification task to bias features toward relevant cardiac structures. This bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD classes respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaout, R., Curran, L., Chinn, E., Zhao, Y., Moon-Grady, A.: Deep-learning models improve on community-level diagnosis for common congenital heart disease lesions. arXiv preprint arXiv:1809.06993 (2018)

  2. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  3. Bennasar, M., et al.: Accuracy of four-dimensional spatiotemporal image correlation echocardiography in the prenatal diagnosis of congenital heart defects. Ultrasound Obstet. Gynecol. 36(4), 458–464 (2010)

    Article  Google Scholar 

  4. Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: Multi-task SonoEyeNet: detection of fetal standardized planes assisted by generated sonographer attention maps. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 871–879. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_98

    Chapter  Google Scholar 

  5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  6. Cerrolaza, J., et al.: 3D fetal skull reconstruction from 2DUS via deep conditional generative networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_44

    Chapter  Google Scholar 

  7. Chen, H., et al.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19(5), 1627–1636 (2015)

    Article  Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  9. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  10. Kim, B., Kim, K.C., Park, Y., Kwon, J.Y., Jang, J., Seo, J.K.: Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol. Measur. 39(10), 105007 (2018)

    Article  Google Scholar 

  11. Kong, P., Ni, D., Chen, S., Li, S., Wang, T., Lei, B.: Automatic and efficient standard plane recognition in fetal ultrasound images via multi-scale dense networks. In: Melbourne, A., et al. (eds.) PIPPI/DATRA -2018. LNCS, vol. 11076, pp. 160–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_16

    Chapter  Google Scholar 

  12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  13. National Congenital Anomaly and Rare Disease Registration Service: Congenital anomaly statistics 2017 (2017)

    Google Scholar 

  14. National Health Service and Public Health England: NHS Fetal Anomaly Screening Programme Handbook Valid from August 2018. Technical report (2018). https://www.gov.uk/government/publications/fetal-anomaly-screening-programme-handbook

  15. Pinto, N., Keenan, H., Minich, L., Puchalski, M., Heywood, M., Botto, L.: Barriers to prenatal detection of congenital heart disease: a population-based study. Ultrasound Obstet. Gynecol. 40(4), 418–425 (2012)

    Article  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Simpson, J.: Hypoplastic left heart syndrome. Ultrasound Obstet. Gynecol. Official J. Int. Soc. Ultrasound Obstet. Gynecol. 15(4), 271–278 (2000)

    Article  Google Scholar 

  18. Sinclair, M., et al.: Human-level performance on automatic head biometrics in fetal ultrasound using fully convolutional neural networks. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 714–717. IEEE (2018)

    Google Scholar 

  19. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014). http://arxiv.org/abs/1312.6199

  20. Van Velzen, C., et al.: Prenatal detection of congenital heart disease-results of a national screening programme. BJOG Int. J. Obstet. Gynaecol. 123(3), 400–407 (2016)

    Article  Google Scholar 

  21. Yao, J., Pan, W., Ghosh, S., Doshi-Velez, F.: Quality of uncertainty quantification for Bayesian neural network inference. arXiv preprint arXiv:1906.09686 (2019)

  22. Yeo, L., Luewan, S., Romero, R.: Fetal intelligent navigation echocardiography (fine) detects 98% of congenital heart disease. J. Ultrasound Med. 37(11), 2577–2593 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Support from Wellcome Trust IEH Award iFind project [102431]. JT is supported by the ICL President’s Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy Tan or Anselm Au .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, J. et al. (2020). Automated Detection of Congenital Heart Disease in Fetal Ultrasound Screening. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics