Skip to main content

Application of the 2D Models of Media with Dense and Non-dense Packing of the Particles for Solving the Parametric Identification Problems

  • Chapter
  • First Online:
Structural Modeling of Metamaterials

Abstract

Theoretical estimates [1] and experimental data [2,3,4,5] show that rotational waves can exist in solids in the high-frequency field (> 109 – 1011 Hz), where it is rather difficult to carry out acoustic experiments with the technical viewpoint. The question arises: is it possible to obtain some information about the microstructure of a medium from acoustic measurements in the low-frequency range (106 – 107 Hz), when the rotational waves do not propagate in the medium? To this purpose, we will consider in this chapter the low-frequency approximation of Eqs. (2.8) and (3.6), in which the microrotations of the particles of the medium are not independent and are determined by the displacement field. Further, by comparing the obtained equations describing the propagation and interaction of longitudinal and transverse waves in a granular medium in the low-frequency approximation with the equations of the classical theory of elasticity, we will consider the problem of parametric identification of the developed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009)

    Article  Google Scholar 

  2. Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976). (in Russian)

    Google Scholar 

  3. Gross, E.F.: Light scattering and relaxation phenomena in liquids. Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian)

    Google Scholar 

  4. Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP 16(1), 53–59 (1946)

    Google Scholar 

  5. Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-iodiobenzenes, meta-iodiobenzenes and ortho-iodiobenzenes. JETP 20, 293–296 (1950)

    Google Scholar 

  6. Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and Solids. Springer. New York (1999)

    Google Scholar 

  7. Nowacki, W.: Theory of Micropolar Elasticity. J. Springer, Wien (1970)

    Book  Google Scholar 

  8. Kunin, I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin

    Google Scholar 

  9. Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (in Russian)

    Google Scholar 

  10. Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)

    Article  CAS  Google Scholar 

  11. Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech. -ASCE 1, 52–59 (1997)

    Google Scholar 

  12. Shorkin, V.S.: Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity. Mech. Solids. 46(6), 898–912 (2011)

    Google Scholar 

  13. Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999)

    Google Scholar 

  14. Korotkina, M.R.: Remark About Moment Stresses in Discrete Media, vol. 5, pp. 103–109. Moscow University Mechanics Bulletin. Allerton Press, Inc (1969)

    Google Scholar 

  15. Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow, 1965; Plenum Press, New York, 1968

    Google Scholar 

  16. Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland Publ. Comp, Amsterdam (1972)

    Google Scholar 

  17. Krivtsov, A.M.: Deformation and Destruction of Microstructured Solids, p. 304. Fizmatlit Publ., Moscow (2007) (in Russian)

    Google Scholar 

  18. Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000)

    Google Scholar 

  19. Kitaygorodskiy, A.I.: Molecular Crystals, p. 424. Nauka Publ., Moscow (1971) (in Russian)

    Google Scholar 

  20. Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968)

    Google Scholar 

  21. Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: Elastic constants and elasticity moduli of metals and nonmetals. In: Frantsevich, I.N. (ed.) Reference Book. Naukova Dumka, Kiev (1982). (in Russian)

    Google Scholar 

  22. Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010)

    Google Scholar 

  23. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley Publishing Company, Inc, Reading, Massachusetts, Palo Alto, London (1964)

    Google Scholar 

  24. Yildirim, T., Harris, A.B.: Lattice dynamics of solids C60. Phys. Rev. B 46, 7878–7896 (1992)

    Article  CAS  Google Scholar 

  25. Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Sov. Phys. Tech. Phys. 28, 2255 (1958)

    Google Scholar 

  26. Kulesh, M.A., Grekova, E.F., Shardakov, I.N.: The problem of surface wave propagation in a reduced Cosserat medium. Acoust. Phys. 55(2), 218–226 (2009). https://doi.org/10.1134/S1063771009020110

    Article  CAS  Google Scholar 

  27. Kulesh, M.A., Matveenko, V.P., Shardakov, I.N.: Propagation of surface elastic waves in the Cosserat medium. Acoust. Phys. 52(2), 186–193 (2006). https://doi.org/10.1134/s1063771006020114

    Article  Google Scholar 

  28. Suvorov, Y.M., Tarlakovskii, D.V., Fedotenkov, G.V.: The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium. J. Appl. Math. Mech. 76(5), 511–518 (2012)

    Article  Google Scholar 

  29. Adamov, A.A.: On calculation effects in solving the boundary problems for the isotropic homogeneous Cosserat continuum. In: Proceedings of VI Russian Conference “Mechanics of Microheterogeneous Materials and Fracture”. Yekaterinburg (Russia) (2010). http://book.uraic.ru/project/conf/txt/008/2010/mmp2.htm

  30. Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)

    Google Scholar 

  31. Hirth, J.P., Lothe, J.: Theory of Dislocations. Mc Graw-Hill Book Company, New York (1970)

    Google Scholar 

  32. Koniok, D.A., Voitsekhovsky, K.V., Pleskachevsky, Yu.M., Shilko, S.V.: Materials with negative Poisson’s ratio (The review). Composite Mech. Des. 10, 35–69 (2004)

    Google Scholar 

  33. Yang, W.: Review on auxetic materials. J. Mater. Sci. 39, 3269–3279 (2004)

    Google Scholar 

  34. Zubov, V.G., Firsova, M.M.: Elastic properties of quartz near the α-β transition. Sov. Phys. Crystallograthy 7, 374–376 (1962)

    Google Scholar 

  35. Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour New Ser. 4, 170–174 (1991)

    Article  Google Scholar 

  36. Baimova, J.A., Rysaeva, L.Kh., Dmitriev, S.V., Lisovenko, D.S., Gorodtsov, V.A., Indeitsev, D.A.: Auxetic behaviour of carbon nanostructures. Mater. Phys. Mech. 33(1), 1–11 (2017)

    Google Scholar 

  37. Hall, L.J., Coluci, V.R., Galvão, D.S., Kozlov, M.E., Zhang, M., Dantas, S.O., Baughman, R.H.: Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875), 504–507 (2008)

    Article  CAS  Google Scholar 

  38. Zaitsev, V.Y., Radostin, A.V., Pasternak, E., Dyskin, A.: Extracting real-crack properties from non-linear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios. Nonlinear Process. Geophys. 24(3), 543–551 (2017)

    Article  Google Scholar 

  39. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Doklady Phys. 58(9), 400–404 (2013)

    Google Scholar 

  40. Vasiliev, A.A., Pavlov, I.S.: Auxetic properties of hiral hexagonal Cosserat lattices composed of finite-sized particles. Phys. Status Solidi B 3(257), 1900389 (2020). https://doi.org/10.1002/pssb.201900389

    Article  CAS  Google Scholar 

  41. Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi B 245(11), 2395–2404 (2008)

    Article  CAS  Google Scholar 

  42. Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys. Status Solidi B 245(3), 521–529 (2008)

    Article  CAS  Google Scholar 

  43. Narojczyk, J.W., Wojciechowski, K.W.: Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Crystalline Solids 356(37–40), 2026–2032 (2010)

    Google Scholar 

  44. Novikov, V.V., Wojciechowski, K.W.: Negative Poisson coefficient of fractal structures. Phys. Solid State 41(12), 1970–1975 (1999)

    Article  CAS  Google Scholar 

  45. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: The elastic properties of hexagonal auxetics under pressure. Phys. Status Solidi B 253(7), 1261–1269 (2016)

    Article  CAS  Google Scholar 

  46. Wojciechowski, K.W.: Negative Poisson ratios at negative pressures. Mol. Phys. Rep. 10, 129–136 (1995)

    Google Scholar 

  47. Lethbridge, Z.A.D., Walton, R.I., Marmier, A., Smith, C.W., Evans, K.E.: Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Materialia 58, 6444–6451 (2010)

    Google Scholar 

  48. Belomestnykh, V.N., Soboleva, E.G.: Unconventional approach to determination anisotropic Poisson’s ratios in cubic crystals. Lett. Mater. 2(1), 13–16 (2012)

    Article  Google Scholar 

  49. Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971)

    Google Scholar 

  50. Erofeev, V.I., Pavlov, I.S.: Parametric identification of crystals having a cubic lattice with negative Poisson’s ratios. J. Appl. Mech. Tech. Phys. 56(6), 1015–1022 (2015)

    Article  Google Scholar 

  51. Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. European J. Mech. A Solids 46, 96–105 (2014)

    Google Scholar 

  52. Vasiliev, A.A., Pavlov, I.S.: Models and some properties of Cosserat triangular lattices with chiral microstructure. Lett. Mater. 9(1), 45–50 (2019). www.lettersonmaterials.com https://doi.org/10.22226/2410-3535-2019-1-45-50

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erofeev, V.I., Pavlov, I.S. (2021). Application of the 2D Models of Media with Dense and Non-dense Packing of the Particles for Solving the Parametric Identification Problems. In: Structural Modeling of Metamaterials. Advanced Structured Materials, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-60330-4_4

Download citation

Publish with us

Policies and ethics