Skip to main content

A 2D Lattice with Dense Packing of the Particles

  • Chapter
  • First Online:
Structural Modeling of Metamaterials

Abstract

Mechanical properties of a granular consolidated medium depend on the geometry of the microparticles, their location, and the forces of interaction between them. One of the main goals of mathematical modeling of such media is obtaining equations of motion and equations of state, which are capable to describe a discrete nature of a medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereinafter, we will use the terms “grains” and “granules” as synonyms for the word “particles.” However, these terms do not have such a meaning, as in materials science.

References

  1. Belyaeva, I.Y., Zaitsev, V.Y., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993)

    Google Scholar 

  2. Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999)

    Google Scholar 

  3. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Dokl. Phys. 58(9), 400–404 (2013)

    Google Scholar 

  4. Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech.-ASCE 1, 52–59 (1997)

    Google Scholar 

  5. Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994)

    Google Scholar 

  6. Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME J. Appl. Mech. 48(2), 339–344 (1981)

    Article  Google Scholar 

  7. Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles one-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)

    Article  Google Scholar 

  8. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D Granular Medium With Rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)

    Article  Google Scholar 

  9. Sadovskaya, O., Sadovskii, V.: Mathematical modeling in mechanics of granular materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p (2012)

    Google Scholar 

  10. Krivtsov, A.M., Podol’skaya E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids. 45(3), 370–378 (2010)

    Google Scholar 

  11. Krivtsov, A.M.: Deformation and destruction of microstructured solids. Fizmatlit Publ., Moscow, 304 p (2007). (in Russian)

    Google Scholar 

  12. Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985)

    Google Scholar 

  13. Berglund K.: Structural models of micropolar media. In: Mechanics of Micropolar Media. Brulin, O., Hsieh, R.K.T. (eds.) World Scientific, Singapore, pp. 35–86 (1982)

    Google Scholar 

  14. Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7, 82–93 (1996)

    Article  Google Scholar 

  15. Pavlov, I.S.: Acoustic Identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)

    Article  CAS  Google Scholar 

  16. Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vibr. 384, 163–176 (2016)

    Article  Google Scholar 

  17. Pavlov, I.S., Potapov, A.I.: Structural Models in Mechanics of Nanocrystalline Media. Dokl. Phys. 53(7), 408–412 (2008)

    Article  CAS  Google Scholar 

  18. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009)

    Article  Google Scholar 

  19. Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)

    Google Scholar 

  20. Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: analysis of body waves and eigenmodes. J Sound Vib. 240(1), 1–18 (2001)

    Google Scholar 

  21. Vasiliev, A.A., Pavlov, I.S.: Auxetic properties of hiral hexagonal cosserat lattices composed of finite-sized particles. Phys. Status Solidi B 3(257), 1900389 (2020). https://doi.org/10.1002/pssb.201900389

    Article  CAS  Google Scholar 

  22. Vasiliev, A.A., Pavlov, I.S.: Models and some properties of Cosserat triangular lattices with chiral microstructure. Lett. Mater. 9(1), 45–50 (2019) www.lettersonmaterials.com, https://doi.org/10.22226/2410-3535-2019-1-45-50

  23. Erofeev, V.I., Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of a closed-packed lattice consisting of round particles. In: Altenbach, H., et al. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 2, Advanced Structured Materials 90. © Springer International Publishing AG, part of Springer Nature 2018, pp. 101–117

    Google Scholar 

  24. Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968)

    Article  Google Scholar 

  25. Sedov, L.I.: Mechanics of continuous medium. World Scientific Publ, Singapore, vol. 1, (1997)

    Google Scholar 

  26. Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999)

    Google Scholar 

  27. Bogomolov, V.N., Parfen’eva, L.S., Smirnov, I.A., Misiorek, H., Jzowski, A.: Phonon propagation through photonic crystals—media with spatially modulated acoustic properties. Phys. Solis State 44, 181–185 (2002)

    Google Scholar 

  28. Vetrov, S.Y., Timofeev, I.V., Rudakova, N.V.: Band structure of a two-dimensional resonant photonic crystal. Phys. Solid State 52, 527–532 (2010)

    Google Scholar 

  29. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: The face-centered cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1991)

    Google Scholar 

  30. Fujii, M., Kanzaea, Y., Hayashi, S., Yamamoto, K.: Raman scattering from acoustic phonons confined in Si nanocrystals. Phys Rev. B 54, R8373 (1996)

    Article  CAS  Google Scholar 

  31. Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B 49, 2313 (1994)

    Google Scholar 

  32. Samusev, K.B., Rybin, M.V., Limonov, M.F., Yushin, G.N.: Structural parameters of synthetic opals: statistical analysis of electron microscopy images. Phys. Solid State 50(7), 1280–1286 (2008)

    Article  CAS  Google Scholar 

  33. Stroscio, M.A., Dutta, M.: Phonons in nanostructures. Cambridge University Press, 274 p (2001)

    Google Scholar 

  34. Pierce, J.R., Almost All about Waves, Dover Publications (2006)

    Google Scholar 

  35. Normal waves. In: Prokhorov, A.M., (ed.) The physical encyclopedia in 5 volumes. The Big Russian encyclopedia, Moscow, vol. 3. p. 360 (1992). (in Russian)

    Google Scholar 

  36. Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972)

    Article  Google Scholar 

  37. Ostrovsky, L.A., Potapov, A.I.: Modulated waves: theory and applications. The Johns Hopkins University Press, Baltimore, MD (1999)

    Google Scholar 

  38. Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  39. Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, Inc., (2005)

    Google Scholar 

  40. Kaganov, M.I.: Electrons, Phonons, Magnons, 268 pp. English Translation. Mir Publishers, Moscow (1981)

    Google Scholar 

  41. Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010)

    Article  CAS  Google Scholar 

  42. Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society, GEOS, Moscow, no 10, pp. 9–16 (2009). (in Russian)

    Google Scholar 

  43. Reisland, J.A.: Physics of Phonons. Wiley, London, New York, Sydney, Toronto (1973)

    Google Scholar 

  44. Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018) (бeз poтaциoнныx cтeпeнeй, yчeт нeлoкaльнocти, диcкpeтнaя мoдeль)

    Google Scholar 

  45. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010)

    Article  CAS  Google Scholar 

  46. Berryman, J.G.: Long-wavelength propagation in composite elastic media I, II. J. Acoust. Soc. Am. 68(6), 1809–1831 (1980)

    Article  Google Scholar 

  47. Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005)

    Google Scholar 

  48. Porubov, A.V., Aero, E.L., Maugin, G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E79. 046608 (2009)

    Google Scholar 

  49. Vasiliev, A.A., Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010)

    Google Scholar 

  50. Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, pp. 6245–6260 (2005)

    Google Scholar 

  51. Vasiliev, A.A., Miroshnichenko A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008)

    Google Scholar 

  52. Vasiliev, A.A., Miroshnichenko A.E., Dmitriev, S.V.: Multi-field modeling of a cosserat lattice: models, wave filtering, and boundary effects. Eur. J. Mech. A/Solids. 46, 96–105 (2014)

    Google Scholar 

  53. Andrianov, I.V., Kholod, E.G., Weichert, D.: Application of quasi-continuum models for perturbation analysis of discrete kinks. Nonlinear Dyn. 68, 1–5 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erofeev, V.I., Pavlov, I.S. (2021). A 2D Lattice with Dense Packing of the Particles. In: Structural Modeling of Metamaterials. Advanced Structured Materials, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-60330-4_2

Download citation

Publish with us

Policies and ethics