Skip to main content

Control Strategy Identification via Trap Spaces in Boolean Networks

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12314))

Included in the following conference series:

Abstract

The control of biological systems presents interesting applications such as cell reprogramming or drug target identification. A common type of control strategy consists in a set of interventions that, by fixing the values of some variables, force the system to evolve to a desired state. This work presents a new approach for finding control strategies in biological systems modeled by Boolean networks. In this context, we explore the properties of trap spaces, subspaces of the state space which the dynamics cannot leave. Trap spaces for biological networks can often be efficiently computed, and provide useful approximations of attraction basins. Our approach provides control strategies for a target phenotype that are based on interventions that allow the control to be eventually released. Moreover, our method can incorporate information about the attractors to find new control strategies that would escape usual percolation-based methods. We show the applicability of our approach to two cell fate decision models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baig, S., Seevasant, I., Mohamad, J., Mukheem, A., Huri, H.Z., Kamarul, T.: Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand? Cell Death Dis. 7(1), e2850 (2016). https://doi.org/10.1038/cddis.2015.275

    Article  Google Scholar 

  2. Biane, C., Delaplace, F.: Causal reasoning on boolean control networks based on abduction: theory and application to cancer drug discovery. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(5), 1574–1585 (2019). https://doi.org/10.1109/TCBB.2018.2889102

    Article  Google Scholar 

  3. Calzone, L., et al.: Mathematical modelling of cell-fate decision in response to death receptor engagement. PLOS Comput. Biol. 6(3), 1–15 (2010). https://doi.org/10.1371/journal.pcbi.1000702

    Article  MathSciNet  Google Scholar 

  4. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. Bacterial Mol. Netw. 804, 463–479 (2012)

    Article  Google Scholar 

  5. Csermely, P., Korcsmáros, T., Kiss, H.J., London, G., Nussinov, R.: Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Therapeutics 138(3), 333–408 (2013). https://doi.org/10.1016/j.pharmthera.2013.01.016

    Article  Google Scholar 

  6. Flobak, Å., et al.: Discovery of drug synergies in gastric cancer cells predicted by logical modeling. PLOS Comput. Biol. 11(8), 1–20 (2015). https://doi.org/10.1371/journal.pcbi.1004426

    Article  Google Scholar 

  7. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLOS Comput. Biol. 9(10), 1–15 (2013). https://doi.org/10.1371/journal.pcbi.1003286

  8. Kaminski, R., Schaub, T., Siegel, A., Videla, S.: Minimal intervention strategies in logical signaling networks with asp. Theor. Pract. Logic Program. 13, 675–690 (2013). https://doi.org/10.1017/S1471068413000422

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 2223 (2013). https://doi.org/10.1038/srep02223

    Article  Google Scholar 

  10. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap spaces of Boolean networks. Natural Comput. 14(4), 535–544 (2015). https://doi.org/10.1007/s11047-015-9520-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Klarner, H., Siebert, H.: Approximating attractors of Boolean networks by iterative ctl model checking. Front. Bioeng. Biotechnol. 3, 130 (2015). https://doi.org/10.3389/fbioe.2015.00130

    Article  Google Scholar 

  12. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772 (2016). https://doi.org/10.1093/bioinformatics/btw682

    Article  Google Scholar 

  13. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473, 167–173 (2011). https://doi.org/10.1038/nature10011

    Article  Google Scholar 

  14. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of boolean networks made practical. In: Bortolussi, L., Sanguinetti, G. (eds.) Computational Methods in Systems Biology. vol. 11773, pp. 3–19. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_1

  15. Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Laubenbacher, R.: Identification of control targets in boolean molecular network models via computational algebra. BMC Syst. Biol. 10(1), 94 (2016). https://doi.org/10.1186/s12918-016-0332-x

    Article  Google Scholar 

  16. Samaga, R., Kamp, A.V., Klamt, S.: Computing combinatorial intervention strategies and failure modes in signaling networks. J. Comput. Biol. 17(1), 39–53 (2010). https://doi.org/10.1089/cmb.2009.0121

    Article  MathSciNet  Google Scholar 

  17. Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17(3), 183–193 (2016). https://doi.org/10.1038/nrm.2016.8

    Article  Google Scholar 

  18. Yang, G., Gómez Tejeda Zañudo, J., Albert, R.: Target control in logical models using the domain of influence of nodes. Front. Physiol. 9, 454 (2018). DOI: https://doi.org/10.3389/fphys.2018.00454

  19. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. 114(28), 7234–7239 (2017). https://doi.org/10.1073/pnas.1617387114

    Article  Google Scholar 

  20. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLOS Comput. Biol. 11(4), 1–24 (2015). https://doi.org/10.1371/journal.pcbi.1004193

    Article  Google Scholar 

  21. Zhang, R., et al.: Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. 105(42), 16308–16313 (2008). https://doi.org/10.1073/pnas.0806447105

    Article  Google Scholar 

Download references

Acknowledgements

E.T. was funded by the Volkswagen Stiftung (Volkswagen Foundation), project ID 93063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cifuentes Fontanals .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1221 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cifuentes Fontanals, L., Tonello, E., Siebert, H. (2020). Control Strategy Identification via Trap Spaces in Boolean Networks. In: Abate, A., Petrov, T., Wolf, V. (eds) Computational Methods in Systems Biology. CMSB 2020. Lecture Notes in Computer Science(), vol 12314. Springer, Cham. https://doi.org/10.1007/978-3-030-60327-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60327-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60326-7

  • Online ISBN: 978-3-030-60327-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics