Skip to main content

Synthesis and Simulation of Ensembles of Boolean Networks for Cell Fate Decision

Part of the Lecture Notes in Computer Science book series (LNBI,volume 12314)


The construction of models of biological networks from prior knowledge and experimental data often leads to a multitude of candidate models. Devising a single model from them can require arbitrary choices, which may lead to strong biases in subsequent predictions.

We introduce here a methodology for a) synthesizing Boolean model ensembles satisfying a set of biologically relevant constraints and b) reasoning on the dynamics of the ensembles of models. The synthesis is performed using Answer-Set Programming, extending prior work to account for solution diversity and universal constraints on reachable fixed points, enabling an accurate specification of desired dynamics. The sampled models are then simulated and the results are aggregated through averaging or can be analyzed as a multi-dimensional distribution.

We illustrate our approach on a previously published Boolean model of a molecular network regulating the cell fate decisions in cancer progression. It appears that the ensemble-based approach to Boolean modelling brings new insights on the variability of synergistic interacting mutations effect concerning propensity of a cancer cell to metastasize.

S. Chevalier and V. Noël—Co-first authors.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.,

  2. 2.

    Code, data, and notebooks at; Synthesis has been performed on 36-cores CPUs @ 2.6 Ghz with 192 Go of RAM; first ensemble was generated at a rate of 5 s/model/CPU; second ensemble was generated at a rate of 3 min/model/CPU.


  1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    CrossRef  Google Scholar 

  2. Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of Boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 34–41 (2019).

  3. Clarke, M.A., Fisher, J.: Executable cancer models: successes and challenges. Nat. Rev. Cancer 20, 343–354 (2020).

    CrossRef  Google Scholar 

  4. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS Comput. Biol. 11(11), e1004571 (2015).

    CrossRef  Google Scholar 

  5. Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc. Nat. Acad. Sci. 114(23), 5792–5799 (2017).

    CrossRef  Google Scholar 

  6. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98(2), 91–104 (2009).

    CrossRef  Google Scholar 

  7. Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M., Xenarios, I.: Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method. BMC Bioinform. 17(1), 410 (2016).

    CrossRef  Google Scholar 

  8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3), 289–323 (1995).

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009).

    CrossRef  Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–23 (2012)

    CrossRef  Google Scholar 

  11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: preliminary report. CoRR abs/1405.3694 (2014)

    Google Scholar 

  12. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976).

    CrossRef  MathSciNet  Google Scholar 

  13. Goldfeder, J., Kugler, H.: BRE: IN - a backend for reasoning about interaction networks with temporal logic. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 289–295. Springer, Cham (2019).

    CrossRef  Google Scholar 

  14. Kauffman, S.: A proposal for using the ensemble approach to understand genetic regulatory networks. J. Theor. Biol. 230(4), 581–590 (2004).

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015).

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Krawitz, P., Shmulevich, I.: Basin entropy in Boolean network ensembles. Phys. Rev. Lett. 98(15), 158701 (2007).

    CrossRef  Google Scholar 

  17. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1), 115–137 (2004).

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and scalable modeling of biological networks. bioRxiv (2020).

  20. Razzaq, M., Kaminski, R., Romero, J., Schaub, T., Bourdon, J., Guziolowski, C.: Computing diverse Boolean networks from phosphoproteomic time series data. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 59–74. Springer, Cham (2018).

    CrossRef  Google Scholar 

  21. Schwieger, R., Siebert, H.: Graph representations of monotonic Boolean model pools. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 233–248. Springer, Cham (2017).

    CrossRef  Google Scholar 

  22. Stoll, G., et al.: MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics 33(14), 2226–2228 (2017).

    CrossRef  Google Scholar 

  23. Stoll, G., Viara, E., Barillot, E., Calzone, L.: Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst. Biol. 6(1), 116 (2012).

    CrossRef  Google Scholar 

  24. Terfve, C., et al.: CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6(1), 133 (2012).

    CrossRef  Google Scholar 

  25. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  26. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987).

    CrossRef  Google Scholar 

  27. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. Syst. Biol. Appl. 2(1), 1–16 (2016).

    CrossRef  Google Scholar 

  28. Zañudo, J.G., Steinway, S.N., Albert, R.: Discrete dynamic network modeling of oncogenic signaling: mechanistic insights for personalized treatment of cancer. Curr. Opin. Syst. Biol. 9, 1–10 (2018).

    CrossRef  Google Scholar 

Download references


This work has been partially supported by Agence Nationale de la Recherche in the program Investissements d’Avenir (project No. ANR-19-P3IA-0001; PRAIRIE 3IA Institute), by ANR-FNR project “AlgoReCell” (ANR-16-CE12-0034), by ITMO Cancer, and by the Ministry of Science and Higher Education of the Russian Federation (project No. 14.Y26.31.0022). Experiments were carried out using the PlaFRIM experimental testbed,supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régionald’Aquitaine (see

Author information

Authors and Affiliations


Corresponding author

Correspondence to Loïc Paulevé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., Paulevé, L. (2020). Synthesis and Simulation of Ensembles of Boolean Networks for Cell Fate Decision. In: Abate, A., Petrov, T., Wolf, V. (eds) Computational Methods in Systems Biology. CMSB 2020. Lecture Notes in Computer Science(), vol 12314. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60326-7

  • Online ISBN: 978-3-030-60327-4

  • eBook Packages: Computer ScienceComputer Science (R0)