Skip to main content

Novel Cosmogenic Datings in Landslide Deposits, San Juan, Argentina

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Abstract

High-mountain environments in an active tectonic setting are prone to landsliding. The triggering mechanisms can vary, as these areas are influenced by several pre-conditioning factors coupled with active seismicity and climatic forcings. Understanding the intrinsic and external mechanisms by which these events are influenced would help to establish better constraints onto their timing and periodicity and, eventually, hazard assessment and prediction. Glacially eroded valleys are especially prone as they deeply incise mountain ranges leaving unstable slopes once they retreat. Establishing the timing of such events enables better understanding of the triggering and pre-conditioning factors of landslides. To this aim, 10Be and 26Al cosmogenic age determinations were performed in three landslide deposits in a poorly studied area of San Juan province, all of which are novel to the area. Coupled with remote sensing techniques, field observations and detailed stratigraphic and sedimentological studies, these new large landslides represent a first approach to understand this dynamic environment. The three landslides were categorized as rock avalanches found in the middle and lower reaches of the Blanco River, sourced from the Choiyoi Group with evidence of hydrothermal alteration and including/deforming moraine deposits during their fall. Ages are 20.9 ± 1.4, 10.8 ± 0.7 and 12.8 ± 0.9 ka from the lowermost deposit to the highest, respectively. Even though one sample per deposit is not enough to have statistically significant exposure ages, these values, along with the established chronostratigraphy, allow first order interpretations regarding the links between deglaciation processes and readjustment of the slopes via large landslide events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmadaliev S, Heller R, Hanf D, Rugel G, Merchel S (2013) The new 6 MV AMS-facility DREAMS at Dresden. Nucl Instr Meth Phys Res B 294:5–10

    Article  Google Scholar 

  • Alvarez PP, Ramos VA (1999) The Mercedario rift system in the principal Cordillera of Argentina and Chile (32 SL). J South Ame Earth Sci 12:17–31. https://doi.org/10.1016/S0895-9811(99)00004-8

    Article  Google Scholar 

  • Arnold M, Merchel S, Bourlès DL, Braucher R, Benedetti L, Finkel RC, Aumaître G, Gottdang A, Klein M (2010) The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nucl Inst Meth Phys Res B 268:1954–1959. https://doi.org/10.1016/j.nimb.2010.02.107

    Article  Google Scholar 

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quater Sci Rev 21:1935–2017. https://doi.org/10.1016/S0277-3791(02)00005-7

    Article  Google Scholar 

  • Ballantyne CK, Stone JO (2013) Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology 186:150–161. https://doi.org/10.1016/j.geomorph.2012.12.030

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhae K, Koffi B, Palutikov J, Schoell R, Semmier T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(suppl. 1):71–95

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet Sci Lett 327:97–110. https://doi.org/10.1016/j.epsl.2012.02.005

    Article  Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120(1-2):56–64

    Google Scholar 

  • Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook EJ (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta 55(8):2269–2283

    Google Scholar 

  • Caminos R (1965) Geología de la vertiente oriental del Cordón del Plata, Cor-dillera Frontal de Mendoza. Revista de la Asociación Geológica Argentina 20:351–392

    Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10 Be cosmic ray exposure ages. Geomorphology 95:3–26. https://doi.org/10.1016/j.geomorph.2006.12.022

    Article  Google Scholar 

  • Dunai TJ (2010) Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciences. Cambridge University Press

    Google Scholar 

  • Espizua LE (1993) Quaternary glaciations in the río Mendoza valley, Argentine Andes. Quatern Res 40:150–162. https://doi.org/10.1006/qres.1993.1067

    Article  Google Scholar 

  • Fernández LR, Hereida N, Espina RG, Cegarra MI (1997) Estratigrafía y es-tructura de los Andes Centrales Argentinos entre los 30° y 31° de Latitud Sur. Acta geológica hispánica 32:51–76

    Google Scholar 

  • Haeberli W, Gruber S (2009) Global warming and mountain permafrost. In: Margesin R (eds) Permafrost Soils. Soil Biology, 16st edn. Springer, Berlin, Heidelberg

    Google Scholar 

  • Heredia N, Fernández LR, Gallastegui G, Busquets P, Colombo F (2002) Geo-logical setting of the Argentine Frontal Cordillera in the flat-slab segment (30° 00′–31° 30′ S latitude). J S Am Earth Sci 15:79–99. https://doi.org/10.1016/S0895-9811(02)00007-X

    Article  Google Scholar 

  • Hermanns R, Fauqué F, Wilson C (2015): 36Cl terrestrial cosmogenic nuclide dating suggests late pleistocene to early holocene mass movements on the south Face of Aconcagua Mountain and in the Las Cuevas-Horcones Valleys, Central Andes, Argentina. In: Geological Society of London, Special Publication, 399, Geodynamic Processes in the Andes of Central Chile and Argentina. https://doi.org/10.1144/SP399.19

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37(1):77–91. https://doi.org/10.1002/esp.2223

    Article  Google Scholar 

  • Jeanneret P, Moreiras SM, Orgeira MJ, Korup O (2017) Nuevos aportes de la evolución geomorfológica de la cuenca del Arroyo Laguna Blanca, Cerro Mercedario, San Juan. Sesión Técnica 15: Riesgo Geológico y Geología Ambiental y Urbana. Presented at the XX Congreso Geológico Argentino, Asociación Geoló-gica Argentina, San Miguel de Tucumán, pp 62–63

    Google Scholar 

  • Jeanneret P, Moreiras SM (2018) Inventario de procesos de remoción en masa en la cuenca baja del Río Blanco (31 S), Andes Centrales Argentinos. Revista Mexicana de Ciencias Geológicas 35(3):215–227

    Article  Google Scholar 

  • Junquera Torrado S, Moreiras SM, Sepúlveda SA (2019) Distribution of land-slides along the Andean active orogenic front (Argentinean Precordillera 31–33° S). Quatern Int 512:18–34. https://doi.org/10.1016/j.quaint.2019.01.030

    Article  Google Scholar 

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16. https://doi.org/10.1016/j.geomorph.2012.02.015

    Article  Google Scholar 

  • Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim Acta 84:215–220

    Article  Google Scholar 

  • Merchel S, Arnold M, Aumaître G, Benedetti L, Bourlès DL, Braucher R, Alfimov V, Freeman SPHT, Steier P, Wallner A (2008) Towards more precise 10Be and 36Cl data from measurements at the 10–14 level: Influence of sample preparation. Nucl Instr Meth Phys Res B 266:4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031

    Article  Google Scholar 

  • Merchel S, Bremser W, Bourlès DL, Czeslik U, Erzinger J, Kummer NA, Leanni L, Merkel B, Recknagel S, Schaefer U (2013) Accuracy of 9Be-data and its influence on 10Be cosmogenic nuclide data. J. Radioanal Nucl Chem 298:1871–1878

    Article  Google Scholar 

  • Merchel S, Gärtner A, Beutner S, Bookhagen B, Chabilan A (2019) Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for 10Be and 26Al analysis. Nucl Instrum Methods Phys Res, Sect B 455:293–299

    Article  Google Scholar 

  • Minetti J, Barbieri PM, Carletto MC, Poblete AG, Sierra EM (1986) El régimen de precipitaciones de la provincia de San Juan y su entorno. San Juan, Centro de Investigaciones Regionales, Informe Técnico 8:47

    Google Scholar 

  • Moreiras SM (2006) Chronology of a probable neotectonic Pleistocene rock avalanche, Cordon del Plata (Central Andes), Mendoza, Argentina. Quatern Int 148:138–148. https://doi.org/10.1007/978-3-319-53483-1_42

    Article  Google Scholar 

  • Moreiras SM (2009) Análisis de las variables que condicionan la inestabilidad de las laderas en los valles de los ríos Las Cuevas y Mendoza. Revista de la Asociación Geológica Argentina 65(4):780–790

    Google Scholar 

  • Moreiras SM, Páez MS, Lauro C, Jeanneret P (2017) First cosmogenic ages for glacial deposits from the Plata range (33° S): new inferences for quaternary landscape evolution in the Central Andes. Special Volume. Interactions between Quaternary climatic forcing, tectonics and volcanism along some different tectonic settings of South America. Quatern Int 438: 50–64. https://doi.org/10.1016/j.quaint.2016.08.041

  • Moreiras SM (2017) Coupled slope collapse—cryogenic processes in De-glaciated valleys of the aconcagua region, central andes. In: Workshop on world landslide forum. Springer, pp 355–359

    Google Scholar 

  • Moreiras SM, Hermanns RL, Fauqué L (2015) Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32° S). Quat Sci Rev 112:45–58

    Article  Google Scholar 

  • Moreiras SM, Benavente CA, Bufarini CD (2018) Análisis de régimen sedimentario del paleolago de altura pleistoceno donde se hallaron los primeros restos dentarios del équido Hippidion Devillei, Mendoza-Argentina. Lat Am J Sedimentol Basin Anal 25(1):55–67

    Google Scholar 

  • Pérez DJ (2001) Tectonic and unroofing history of Neogene Manantiales fore-land basin deposits, Cordillera Frontal (32° 30′ S), San Juan Province, Argentina. J S Am Earth Sci 14:693–705. https://doi.org/10.1016/S0895-9811(01)00071-2

    Article  Google Scholar 

  • Ramos VA (1999) Las provincias geológicas del territorio argentino. Geología Argentina 29:41–96

    Google Scholar 

  • Rugel G, Pavetich S, Akhmadaliev S, Enamorado Baez SM, Scharf A, Ziegenrücker R, Merchel S (2016) The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl Instr Meth Phys Res B 370:94–100

    Article  Google Scholar 

  • Slaymaker O (2009) Proglacial, periglacial or paraglacial? Geological Society, London, Special Publications 320(1):71–84

    Article  Google Scholar 

  • Tapia Baldis CC, Trombotto Liaudat D (2015) Cinturones altitudinales criogé-nicos en la cuenca del río Bramadero, San Juan, Argentina. Acta Geológica Lil-Loana 27:146–158

    Google Scholar 

  • Torrado SJ, Moreiras SM, Sepúlveda SA (2017) Huge slope collapses flashing the andean active orogenic front (Argentinean Precordillera 31–33° S). In: Workshop on World Landslide Forum, Springer, pp 535–541

    Google Scholar 

  • Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change and mass movements in the NW Argentine Andes. Earth Planet Sci Lett 179:243–256

    Article  Google Scholar 

  • Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeogr Palaeoclimatol Palaeoecol 194:109–121. https://doi.org/10.1016/S0031-0182(03)00273-6

    Article  Google Scholar 

  • Zech J, Zech R, Kubik PW, Veit H (2009) Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeogr Palaeoclim Palaeoecol 284:180–190

    Article  Google Scholar 

  • Zech R, Kull C, Ilgner J, Kubik PW, Veit H (2008) Timing of the Late Quaternary Glaciation in the Andes from ~15 to ~40°S. -. J. Quaternary Sci. 23:635–647

    Article  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrom AP, Anderson B, Balracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurdsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61(228):745–761

    Article  Google Scholar 

Download references

Acknowledgements

This article was based on previous studies and findings of running researches supported by PIP 11220150100191CO project, the ANLAC (Natural Hazards in the Central Andes: analysis, prediction and valuation) Program from University of Cuyo, and SeCTyP 2016-2018 (A06/669-Res.3820/2016) project lead all of them by Prof. Moreiras. We would like to thank the team in the Institute of Geology and Mineralogy in the University of Cologne for lending the crush lab and magnetic separator used for the physical preparation of the samples, specially to Tomasz Goral for his assistance. We also would like to thank the DREAMS team in HZDR, especially Georg Rugel for helping with AMS data treatment, Johannes von Borany for the official invitation to HZDR, Sabina Beutner (HZDR) for the ICP-MS measurements of 27Al and the ASTER-CEREGE team for taking special care of the AMS samples sent to France. The ASTER AMS national facility (CEREGE, Aix-en-Provence) is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” program for the “Equipements d’excellence” ASTER-CEREGE action and IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Maris Moreiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeanneret, P. et al. (2021). Novel Cosmogenic Datings in Landslide Deposits, San Juan, Argentina. In: Vilímek, V., Wang, F., Strom, A., Sassa, K., Bobrowsky, P.T., Takara, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60319-9_40

Download citation

Publish with us

Policies and ethics