Skip to main content

Monitoring and Early Warning Systems: Applications and Perspectives

Part of the ICL Contribution to Landslide Disaster Risk Reduction book series (CLDRR)

Abstract

One of the most efficient and cost-effective tools for landslide risk mitigation is often the setup of an early warning system (EWS). Even if the latter encompass both technical-scientific and social-economic topics, the focus of this note is on the monitoring and forecasting components of a slope-scale landslide EWS. In this framework, a landslide monitoring system is required to provide reliable and continuously updated data for quantitatively catching the scenario evolution, thus allowing for correct forecasting analyses and prompt actions for risk mitigation. Landslide monitoring systems based on remote sensing techniques represent efficient and robust tools for risk mitigation, allowing for a low environmental and economic impact and high operator safety in difficult environments. Among these techniques, radar interferometry is one of the most widely adopted and reliable methods, whose advantages include very high accuracy, operation during all weather conditions, and high spatial and temporal coverage. Radar interferometry output data, due to their high accuracy and acquisition frequency (which is getting higher and higher for satellite applications too), perfectly fit in the prediction activity, enabling very often to make accurate and prompt time of failure or scenario evolution forecasts. In this note, a number of case studies are presented, describing the employed monitoring systems and the associated techniques adopted for risk mitigation. In particular, an integrated EWS for rockslide risk mitigation, a landslide EWS in a volcanic environment, a landslide failure prediction using satellite InSAR and a rockfall monitoring and associated time of failure prediction are presented. Each of the cases presented shows a peculiarity that can help in the definition of the characteristics and potential of a modern and reliable landslide EWS, while the recent and upcoming technological and scientific advancements are the premise of even more accurate and meaningful landslide EWSs.

Keywords

  • Risk management
  • Disaster risk reduction
  • Remote sensing
  • Forecasting
  • Landslides
  • Interferometry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-60311-3_1
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-60311-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Adam N, Rodriguez-Gonzalez F, Parizzi A, Liebhart W (2011) Wide area persistent scatterer interferometry. In: 2011 IEEE International geoscience and remote sensing symposium (IGARSS), pp 1481–1484

    Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Groundbased SAR interferometry for monitoring mass movements. Landslides 1:21–28

    CrossRef  Google Scholar 

  • Atzeni C, Barla M, Pieraccini M, Antolini F (2015) Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar. Rock Mech Rock Eng 48:235–246

    CrossRef  Google Scholar 

  • Azimi C, Biarez J, Desvarreux P, Keime F (1989) Prévision d’éboulement en terrain gypseux. In: Bonnard C (ed) Proceedings of the 5th international symposium on landslides, Lausanne, vol 1. A. A. Balkema, Rotterdam, pp 531–536 (in French)

    Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14:1–54

    CrossRef  Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the San Fratello case study. Geomorphology 223:45–60

    CrossRef  Google Scholar 

  • Bardi F, Raspini F, Frodella W, Lombardi L, Nocentini M, Gigli G, Morelli S, Corsini A, Casagli N (2017) Monitoring the rapid-moving reactivation of earth flows by means of GB-InSAR: the April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens 9(2):165

    CrossRef  Google Scholar 

  • Berardino P, Costantini M, Franceschetti G, Iodice A, Pietranera L, Rizzo V (2003) Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng Geol 68(1–2):31–51

    CrossRef  Google Scholar 

  • Berti M, Corsini A, Franceschini S, Iannacone JP (2013) Automated classification of persistent scatterers interferometry time series. Nat Hazards Earth Syst Sci 13(8):1945–1958

    CrossRef  Google Scholar 

  • Bianchini S, Pratesi F, Nolesini T, Casagli N (2015a) Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: the Volterra (Italy) case study. Remote Sens 7:4678–4701

    CrossRef  Google Scholar 

  • Bianchini S, Ciampalini A, Raspini F, Bardi F, Di Traglia F, Moretti S, Casagli N (2015b) Multi-temporal evaluation of landslide movements and impacts on buildings in San Fratello (Italy) by means of C-band and X-band PSI data. Pure appl Geophys 172(11):3043–3065

    CrossRef  Google Scholar 

  • Blikra LH (2012) The Åknes rockslide. In: Clague, Norway JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, pp 323–335

    Google Scholar 

  • Bossi G, Crema S, Frigerio S, Mantovani M, Marcato G, Pasuto A, Schenato L, Cavalli M (2015) The Rotolon catchment early-warning system. In: Engineering geology for society and territory, vol 3. Springer, Cham, pp 91–95

    Google Scholar 

  • Brox D, Newcomen W (2003) Utilizing strain criteria to predict highwall stability performance. In: Proceedings of the 10th ISRM congress, Sandton, South Africa

    Google Scholar 

  • Calvari S, Intrieri E, Di Traglia F, Bonaccorso A, Casagli N, Cristaldi A (2016) Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli. Bull Volc 78(5):39

    CrossRef  Google Scholar 

  • Canuti P, Casagli N, Catani F, Falorni G, Farina P (2007) Integration of remote sensing techniques in different stages of landslide response. In: Progress in landslide science. Springer, Berlin, Heidelberg, pp 251–260

    Google Scholar 

  • Carlà T, Intrieri E, Di Traglia F, Nolesini T, Gigli G, Casagli N (2016) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14:517–534

    CrossRef  Google Scholar 

  • Carlà T, Farina P, Intrieri E, Botsialas K, Casagli N (2017a) On the monitoring and early-warning of brittle slope failures in hard rock masses: examples from an open-pit mine. Eng Geol 228:71–81

    CrossRef  Google Scholar 

  • Carlà T, Intrieri E, Di Traglia F, Nolesini T, Gigli G, Casagli N (2017b) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14(2):517–534

    CrossRef  Google Scholar 

  • Carlà T, Intrieri E, Farina P, Casagli N (2017c) A new method to identify impending failure in rock slopes. Int J Rock Mech Min Sci 93:76–81

    CrossRef  Google Scholar 

  • Carlà T, Farina P, Intrieri E, Ketizmen H, Casagli N (2018) Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng Geol 235:39–52

    CrossRef  Google Scholar 

  • Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F, Casagli N (2019a) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9(1):1–9

    CrossRef  Google Scholar 

  • Carlà T, Nolesini T, Solari L, Rivolta C, Dei Cas L, Casagli N (2019b) Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry. Landslides. 16:1425–1435

    CrossRef  Google Scholar 

  • Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disasters 4(1):9

    CrossRef  Google Scholar 

  • Casagli N, Morelli S, Frodella W, Intrieri E, Tofani V (2018) TXT-tool 2.039–3.2 Ground-based remote sensing techniques for landslides mapping, monitoring and early warning. In: Landslide dynamics: ISDR-ICL landslide interactive teaching tools. Springer, Cham, pp 255–274

    Google Scholar 

  • Casagli N, Tibaldi A, Merri A, Del Ventisette C, Apuani T, Guerri L, Fortuny-Guasch J, Tarchi D (2009) Deformation of stromboli volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data. J Volcanol Geoth Res 182(3–4):182–200

    Google Scholar 

  • Cerase A, Crescimbene M, La Longa F, Amato A (2019) Tsunami risk perception in southern Italy: first evidence from a sample survey. Nat Hazards Earth Syst Sci 19(12)

    Google Scholar 

  • Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech Rock Eng 36:383–408. https://doi.org/10.1007/s00603-002-0035-z

  • Ciampalini A, Bardi F, Bianchini S, Frodella W, Del Ventisette C, Moretti S, Casagli N (2014) Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int J Appl Earth Obs Geoinform 33:166–180

    CrossRef  Google Scholar 

  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, Di Traglia F, Moretti S, Proietti C, Pagliara P, Onori R, Corazza D, Duro A, Basile G, Casagli N (2015) Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase. Geomorphology 249:103–118

    CrossRef  Google Scholar 

  • Ciampalini A, Raspini F, Frodella W, Bardi F, Bianchini S, Moretti S (2016a) The effectiveness of high-resolution LiDAR data combined with PSInSAR data in landslide study. Landslides 13(2):399–410

    CrossRef  Google Scholar 

  • Ciampalini A, Raspini F, Lagomarsino D, Catani F, Casagli N (2016b) Landslide susceptibility map refinement using PSInSAR data. Remote Sens Environ 184:302–315

    CrossRef  Google Scholar 

  • Cina A, Manzino AM, Bendea IH (2019) Improving GNSS landslide monitoring with the use of low-cost MEMS accelerometers. Appl Sci 9(23):5075

    CrossRef  Google Scholar 

  • Confuorto P, Di Martire D, Centolanza G, Iglesias R, Mallorqui JJ, Novellino A, Plank S, Ramondini M, Kurosch T, Calcaterra D (2017) Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens Environ 188:51–72

    CrossRef  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89

    CrossRef  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements Can. Geotech J 40(1):176–191

    CrossRef  Google Scholar 

  • Del Soldato M, Riquelme A, Bianchini S, Tomás R, Di Martire D, De Vita P, Moretti S, Calcaterra D (2018) Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 15(11):2113–2128

    CrossRef  Google Scholar 

  • Del Soldato M, Solari L, Raspini F, Bianchini S, Ciampalini A, Montalti R, Ferretti A, Pellegrineschi V, Casagli N (2019) Monitoring ground instabilities using SAR satellite data: a practical approach. ISPRS Int J Geo-Inf 8(7):307

    CrossRef  Google Scholar 

  • Del Ventisette C, Intrieri E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Natural Hazards Earth Syst Sci 11(9):2483–2495

    CrossRef  Google Scholar 

  • Di Roberto A, Rosi M, Bertagnini A, Marani M P, Gamberi F (2010) Distal turbidites and tsunamigenic landslides of Stromboli volcano (Aeolian Islands, Italy). In: Submarine mass movements and their consequences. Springer, Dordrecht, pp 719–731

    Google Scholar 

  • Di Traglia F, Nolesini T, Intrieri E, Mugnai F, Leva D, Rosi M, Casagli N (2014) Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci Rev 139:317–335

    CrossRef  Google Scholar 

  • Di Traglia F, Nolesini T, Casagli N (2017) Monitoring eruption-induced mass-wasting at active volcanoes: the Stromboli case. In: Workshop on world landslide forum. Springer, Cham, pp 669–676

    Google Scholar 

  • Di Traglia F, Calvari S, D’Auria L, Nolesini T, Bonaccorso A, Fornaciai A, Esposito A, Cristaldi A, Favalli M, Casagli N (2018a) The 2014 effusive eruption at Stromboli: new insights from in situ and remote-sensing measurements. Remote Sens 10(12):2035

    CrossRef  Google Scholar 

  • Di Traglia F, Nolesini T, Ciampalini A, Solari L, Frodella W, Bellotti F, Fumagalli A, De Rosa G, Casagli N (2018b) Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 300:95–112

    CrossRef  Google Scholar 

  • Di Traglia F, Fornaciai A, Favalli M, Nolesini T, Casagli N (2020) Catching geomorphological response to volcanic activity on steep slope volcanoes using multi-platform remote sensing. Remote Sens 12(3):438

    CrossRef  Google Scholar 

  • Dick GJ, Eberhardt E, Cabrejo-Liévano AG, Stead D, Rose ND (2015) Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can Geotech J 52(4):515–529

    CrossRef  Google Scholar 

  • Fan X, Xu Q, Scaringi G, Dai L, Li W, Dong X, Havenith HB (2017) Failure mechanism and kinematics of the deadly June 24th, 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 14(6):2129–2146

    CrossRef  Google Scholar 

  • Farina P, Casagli N, Ferretti A (2008) Radar-interpretation of InSAR measurements for landslide investigations in civil protection practices. In: Proceedings of 1st North American landslide conference. Vail, Colorado, pp 272–283

    Google Scholar 

  • Fathani TF, Karnawati D, Wilopo W, Crowley K (2016) An integrated methodology to develop a standard for landslide early warning systems. Nat Hazards Earth Syst Sci 16(9):2123–2135

    CrossRef  Google Scholar 

  • Federico A, Popescu M, Elia G, Fidelibus C, Internò G, Murianni A (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66(1):245–256

    Google Scholar 

  • Fernández-Steeger T, Arnhardt C, Walter K, Haß SE, Niemeyer F, Nakaten B, Homfeld SD, Asch K, Azzam R, Bill R, Ritter H (2009) SLEWS—a prototype system for flexible real time monitoring of landslides using an open spatial data infrastructure and wireless sensor networks. Geotechnol Sci Rep 13:3–15

    Google Scholar 

  • Ferretti A, Pratin C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    CrossRef  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    CrossRef  Google Scholar 

  • Ferrigno F, Gigli G, Fanti R, Intrieri E, Casagli N (2017) GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Nat Hazards Earth Syst Sci 17(6)

    Google Scholar 

  • Fornaciai A, Favalli M, Nannipieri L (2019) Numerical simulation of the tsunamis generated by the Sciara del Fuoco landslides (Stromboli Island, Italy). Sci Rep 9(1):1–12

    CrossRef  Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    CrossRef  Google Scholar 

  • Frodella W, Salvatici T, Morelli S, Pazzi V, Fanti R (2017) GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events. Nat Hazards Earth Syst Sci 17(10):1779

    CrossRef  Google Scholar 

  • Frodella W, Ciampalini A, Bardi F, Salvatici T, Di Traglia F, Basile G, Casagli N (2018) A method for assessing and managing landslide residual hazard in urban areas. Landslides 15(2):183–197

    CrossRef  Google Scholar 

  • Froude MJ, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    CrossRef  Google Scholar 

  • Fruneau B, Achache J, Delacourt C (1996) Observation and modeling of the Saint-Etienne-de-Tine’e Landslide using SAR interferometry. Tectonophysics 265

    Google Scholar 

  • Fukuzono T (1985) A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. J Jpn Landslide Soc 22:8–13

    CrossRef  Google Scholar 

  • Ghiglia DC, Romero LA (1994) Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am 11(1):107–117

    CrossRef  Google Scholar 

  • Gigli G, Fanti R, Canuti P, Casagli N (2011) Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: the case of Mt. Beni (Florence, Italy). Eng Geol 120(1–4):48–59

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci M, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:1–25

    CrossRef  Google Scholar 

  • Guzzetti F, Gariano SL, Peruccacci S, Brunetti MT, Marchesini I, Rossi M, Melillo M (2020) Geographical landslide early warning systems. Earth Sci Rev 200:102973

    CrossRef  Google Scholar 

  • Hao SW, Liu C, Lu CS, Elsworth D (2016) A relation to predict the failure of materials and potential application to volcanic eruptions and landslides. Sci Rep 6, Article 27877

    Google Scholar 

  • Haque U, Blum P, Da Silva PF, Andersen P, Pilz J, Chalov SR, Malet J-P, Jemec Auflič M, Andres N, Poyiadji E, Lamas PC, Zhang W, Peshevski I, Pétursson HG, Kurt T, Dobrev N, García-Davalillo JC, Halkia M, Ferri S, Gaprindashvili G, Engström J, Keellings D (2016) Fatal landslides in Europe. Landslides 13(6):1545–1554

    CrossRef  Google Scholar 

  • Hill CD, Sippel KD (2002) Modern deformation monitoring: a multi sensor approach. In: Proceedings of the FIG 22nd international conference, Washington, DC, USA, Apr. 2002, pp 1–12

    Google Scholar 

  • Intrieri E, Gigli G (2016) Landslide forecasting and factors influencing predictability. Nat Hazards Earth Syst Sci 16:2501–2510

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147:124–136

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Casagli N, Nadim F (2013) Brief communication. Landslide early warning system: toolbox and general concept. Nat Hazards Earth Syst Sci 13:85–90

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Nocentini M, Lombardi L, Mugnai F, Fidolini F, Casagli N (2015) Sinkhole monitoring and early warning: an experimental and successful GB-InSAR application. Geomorphology 241:304–314

    CrossRef  Google Scholar 

  • Intrieri E, Bardi F, Fanti R, Gigli G, Fidolini F, Casagli N, Costanzo S, Raffo A, Di Massa G, Capparelli G, Versace P (2017) Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application. Nat Hazards Earth Syst Sci 17:1713–1723

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Gracchi T, Nocentini M, Lombardi L, Mugnai F, Frodella W, Bertolini G, Carnevale E, Favalli M, Fornaciai A, Marturià Alavedra J, Mucchi L, Nannipieri L, Rodriguez-Lloveras X, Pizziolo M, Schina R, Trippi F, Casagli N (2018a) Application of an ultra-wide band sensor-free wireless network for ground monitoring. Eng Geol 238:1–14

    CrossRef  Google Scholar 

  • Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N (2018b) The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15(1):123–133

    CrossRef  Google Scholar 

  • Intrieri E, Carlà T, Gigli G (2019) Forecasting the time of failure of landslides at slope-scale: a literature review. Earth Sci Rev 193:333–349

    CrossRef  Google Scholar 

  • Intrieri E, Dotta G, Fontanelli K, Bianchini C, Bardi F, Campatelli F, Casagli N (2020) Operational framework for flood risk communication. Int J Disaster Risk Reduct 46:101510

    CrossRef  Google Scholar 

  • Iovine G, Petrucci O, Rizzo V, Tansi C (2006) The March 7th 2005 Cavallerizzo (Cerzeto) landslide in Calabria—Southern Italy. In: Proceedings of the 10th IAEGCongress, Nottingham, Great Britain. Geological Society of London, 785, 12 pp

    Google Scholar 

  • Kong VWW, Kwan JSH, Pun WK (2020) Hong Kong’s landslip warning system—40 years of progress. Landslides 1–11

    Google Scholar 

  • Kothari UC, Momayez M (2018) New approaches to monitoring, analyzing and predicting slope instabilities. J. Geol. Min. Res. 10(1):1–14

    CrossRef  Google Scholar 

  • Kromer R, Lato M, Hutchinson DJ, Gauthier D, Edwards T (2017) Managing rockfall risk through baseline monitoring of precursors using a terrestrial laser scanner. Can Geotech J 54:953–967. https://doi.org/10.1139/cgj-2016-0178

    CrossRef  Google Scholar 

  • Le Breton M, Baillet L, Larose E, Rey E, Benech P, Jongmans D, Guyoton F, Jaboyedoff M (2019) Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring. Eng Geol 250:1–10

    CrossRef  Google Scholar 

  • Li T (1983) A mathematical model for predicting the extent of a major rockfall. Zeitschrift für Geomorphologie 27(4):473–482

    Google Scholar 

  • Lombardi L, Nocentini M, Frodella W, Nolesini T, Bardi F, Intrieri E, Carlà T, Solari L, Dotta G, Ferrigno F, Casagli N (2017) The Calatabiano landslide (Southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides 14(2):685–696

    CrossRef  Google Scholar 

  • Lu P, Casagli N, Catani F, Tofani V (2012) Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens 33(2):466–489. https://doi.org/10.1080/01431161.2010.536185

    CrossRef  Google Scholar 

  • Luzi G, Pieraccini M, Mecatti D, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42(11):2454–2466

    CrossRef  Google Scholar 

  • Luzi G, Monserrat O, Crosetto M, Copons R, Altimir J (2010) Ground-based SAR interferometry applied to landslide monitoring in mountainous areas, 24–26. In: Mountain risks conference: bringing science to society, Firenze, Italy

    Google Scholar 

  • Macciotta R, Hendry M, Roghani A (2016) Developing hazard management strategies based on tolerable risk to railway operations

    Google Scholar 

  • Mak SH, Au Yeung YS, Chung PWK (2007) Public education and warnings in landslide risk reduction. A Commemorative Volume Published in Conjunction with the 40th Anniversary of the Southeast Asian Geotechnical Society, Kuala Lumpur, Malaysia, pp 367–375

    Google Scholar 

  • Maramai A, Graziani L, Tinti S (2005) Tsunamis in the Aeolian Islands (southern Italy): a review. Mar Geol 215(1–2):11–21

    CrossRef  Google Scholar 

  • Meisina C, Notti D, Zucca F, Ceriani M, Colombo A, Poggi F, Roccati A, Zaccone A (2013) The use of PSInSAR™and SqueeSAR™techniques for updating landslide inventories. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, Heidelberg, pp 81–87

    CrossRef  Google Scholar 

  • Meisina C, Zucca F, Macciotta R, Martin CD, Morgenstern NR, Cruden DM (2016) Quantitative risk assessment of slope hazards along a section of railway in the Canadian Cordillera—a methodology considering the uncertainty in the results. Landslides 13:115–127. https://doi.org/10.1007/s10346-014-0551-4

    CrossRef  Google Scholar 

  • Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS J Photogramm Remote Sens 93:40–48

    CrossRef  Google Scholar 

  • Mucchi L, Jayousi S, Martinelli A, Caputo S, Intrieri E, Gigli G, Gracchi T, Mugnai F, Favalli M, Fornaciai A, Nannipieri L (2018) A flexible wireless sensor network based on ultra-wide band technology for ground instability monitoring. Sensors 18(9):2948

    Google Scholar 

  • Mufundirwa A, Fujii Y, Kodama J (2010) A new practical method for prediction of geomechanical failure-time. Int J Rock Mech Min Sci 47(7):1079–1090

    CrossRef  Google Scholar 

  • Muttillo M, Colagiovanni A, Pantoli L, Ferri G (2019) Landslides monitoring by means of low cost wired sensor networks. AISEM annual conference on sensors and microsystems. Springer, Cham, pp 143–147

    Google Scholar 

  • Nadim F, Intrieri E (2011) Early warning systems for landslides: challenges and new monitoring technologies. In: 5th Canadian conference on geotechnique and natural hazards. Kelowna, BC, Canada, pp 15–17

    Google Scholar 

  • Nolesini T, Frodella W, Bianchini S, Casagli N (2016) Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study. Remote Sens 8(9):746

    CrossRef  Google Scholar 

  • Notti D, Cina A, Manzino A, Colombo A, Bendea IH, Mollo P, Giordan D (2020) Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors 20(1):289

    CrossRef  Google Scholar 

  • Pecoraro G, Calvello M, Piciullo L (2019) Monitoring strategies for local landslide early warning systems. Landslides 16(2):213–231

    CrossRef  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    CrossRef  Google Scholar 

  • Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2002) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24:1385–1391

    CrossRef  Google Scholar 

  • Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2003) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24(6):1385–1391

    CrossRef  Google Scholar 

  • Pinggen Z (2004) Indicator system and techniques of landslide monitoring. J Geomech 1:19–26

    Google Scholar 

  • Pratesi F, Nolesini T, Bianchini S, Leva D, Lombardi L, Fanti R, Casagli N (2015) Early warning GBInSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J Sel Top Appl Earth Obs Remote Sens 8:1753–1762

    CrossRef  Google Scholar 

  • Ramesh MV, Kumar S, Rangan PV (2009) Wireless sensor network for landslide detection. Proc ICWN. 2009:89–95

    Google Scholar 

  • Raspini F, Ciampalini A, Del Conte S, Lombardi L, Nocentini M, Gigli G, Ferretti A, Casagli N (2015) Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy). Remote Sens 7(11):14576–14596

    CrossRef  Google Scholar 

  • Raspini F, Bianchini S, Ciampalini A, Del Soldato M, Solari L, Novali F, Del Conte S, Rucci A, Ferretti A, Casagli N (2018) Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci Rep 8(1):1–11

    CrossRef  Google Scholar 

  • Raspini F, Bianchini S, Ciampalini A, Del Soldato M, Montalti R, Solari L, Tofani V, Casagli N (2019) Persistent Scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides 16(10):2033–2044

    CrossRef  Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Praxis, Chichester, pp 305–324

    CrossRef  Google Scholar 

  • Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse velocity method. Int J Rock Mech Min Sci 44(2):308–320

    CrossRef  Google Scholar 

  • Rosi A, Berti M, Bicocchi N, Castelli G, Corsini A, Mamei M, Zambonelli F (2011) Landslide monitoring with sensor networks: experiences and lessons learnt from a real-world deployment. Int J Sens Netw 10(3):111–122

    CrossRef  Google Scholar 

  • Rosi M, Levi ST, Pistolesi M, Bertagnini A, Brunelli D, Cannavò V, Di Renzoni A, Ferranti F, Renzulli A, Yoon D (2019) Geoarchaeological evidence of middle-age tsunamis at Stromboli and consequences for the tsunami hazard in the Southern Tyrrhenian Sea. Sci Reports 9(1):1–10

    Google Scholar 

  • Rosser N, Lim M, Petley D, Dunning S, Allison R (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res 112:F04014. https://doi.org/10.1029/2006JF000642

    CrossRef  Google Scholar 

  • Saito M (1969) Forecasting time of slope failure by tertiary creep. In: Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico City, vol 2, pp 677–683

    Google Scholar 

  • Sassa K (2015) ISDR-ICL Sendai Partnerships 2015–2025 for global promotion of understanding and reducing landslide disaster risk. Landslides 12(4):631–640

    CrossRef  Google Scholar 

  • Sassa K (2019) The fifth world landslide forum and the final draft of the Kyoto 2020 commitment. Landslides 16(2):201–211

    CrossRef  Google Scholar 

  • Scaringi G, Fan X, Xu Q, Liu C, Ouyang C, Domènech G, Dai L (2018) Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides 15(7):1359–1375

    CrossRef  Google Scholar 

  • Schaefer LN, Di Traglia F, Chaussard E, Lu Z, Nolesini T, Casagli N (2019) Monitoring volcano slope instability with synthetic aperture radar: a review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth Sci Rev 192:236–257

    CrossRef  Google Scholar 

  • Singh K, Tordesillas A (2020) Spatiotemporal evolution of a landslide: a transition to explosive percolation. Entropy 22:67

    CrossRef  Google Scholar 

  • Solari L, Raspini F, Del Soldato M, Bianchini S, Ciampalini A, Ferrigno F, Casagli N (2018) Satellite radar data for back-analyzing a landslide event: the Ponzano (Central Italy) case study. Landslides 15(4):773–782

    CrossRef  Google Scholar 

  • Solari L, Del Soldato M, Montalti R, Bianchini S, Raspini F, Thuegaz P, Casagli N (2019) A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. Int J Remote Sens 40(20):7898–7921

    Google Scholar 

  • Stock GM, Martel SJ, Collins BD, Harp EL (2012) Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA. Earth Surf Process Landforms 37:546–561. https://doi.org/10.1002/esp.3192

  • Tarchi D, Ohlmer E, Sieber AJ (1997) Monitoring of structural changes by radar interferometry. Res Nondestr Eval 9:213–225

    CrossRef  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 1(68):15–30

    CrossRef  Google Scholar 

  • Terzis A, Anandarajah A, Moore K, Wang I-J (2006) Slip surface localization in wireless sensor networks for landslide prediction. In: Proceedings of the international conference on sensor network, pp 109–116

    Google Scholar 

  • Thiebes B, Glade T (2016) Landslide early warning systems–fundamental concepts and innovative applications. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes: experience, theory and practice. Proceedings of the 12th international symposium on landslides, Napoli, Italy, pp 12–19

    Google Scholar 

  • Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5(3):1045–1065

    CrossRef  Google Scholar 

  • Tordesillas A, Walker DM, Andò E, Viggiani G (2013) Revisiting localized deformation in sand with complex systems. Proc R Soc A Math Phys Eng Sci 469:20120606

    Google Scholar 

  • Tordesillas A, Zhou S, Di Traglia F, Intrieri E (2020) New insights into the spatiotemporal precursory failure dynamics of the 2017 Xinmo landslide and its surrounds. WLF Kyoto, Japan (this volume)

    Google Scholar 

  • Turchi A, Di Traglia F, Luti T, Olori D, Zetti I, Fanti R (2020) Environmental aftermath of the 2019 Stromboli eruption. Remote Sens 12(6):994

    CrossRef  Google Scholar 

  • UNISDR (2006) Developing an early warning system: a checklist. The Third International Conference on Early Warning (EWC III). https://www.unisdr.org/2006/ppew/info-resources/ewc3/checklist/English.pdf. Last accessed March 2016, 2006

  • UNISDR (2009) Terminology on disaster risk reduction. https://www.undrr.org/publication/2009-unisdr-terminology-disaster-risk-reduction. Last accessed March 2020

  • Varnes DJ, IAEG Commission on Landslides (1984) Landslide hazard zonation: a review of principles and practice, vol 3. UNESCO, Paris, France, 63 pp

    Google Scholar 

  • Voight B (1989) Materials science law applies to time forecasts of slope failure. Landslide News 3:8–11

    Google Scholar 

  • Xu Q, Yuan Y, Zeng YP, Hack R (2011) Some new pre-warning criteria for creep slope failure. Sci China Tech Sci 54(1):210–220

    CrossRef  Google Scholar 

  • Zavodni ZM, Broadbent CD (1978) Slope failure kinematics. Bull Can Inst Min 73:69–74

    Google Scholar 

Download references

Acknowledgements

The work on Gallivaggio and Stromboli case studies was financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers—Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Intrieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Casagli, N. et al. (2021). Monitoring and Early Warning Systems: Applications and Perspectives. In: Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T., Takara, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60311-3_1

Download citation