Skip to main content

Identification of Sensitive Factors for Placement of Flood Monitoring Sensors in Wastewater/Stormwater Network Using GIS-Based Fuzzy Analytical Hierarchy Process: A Case of Study in Ålesund, Norway

  • Conference paper
  • First Online:
Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 108))

Abstract

Identification of optimal sensor placement in wastewater/stormwater networks plays a crucial role in monitoring the network’s status. This study proposes and verifies a new approach based on the fuzzy Analytical Hierarchy Process (AHP) and Geographic Information System for delineating potential areas for placing sensors of the wastewater/stormwater networks. The coastal city of Ålesund (Norway) was selected as a case study. In this regard, a GIS database was constructed, which consists of eight criteria, altitude, rainfall, geology, manholes, population density, critical infrastructures, road network, and traffic load. Using the fuzzy AHP, weights for the eight criteria were computed, and then, suitability maps for placement of the sensor position were generated in a GIS environment. The results showed that manholes, altitude, and rainfall are sensitive factors for placing sensors in wastewater and stormwater pipe network. The suitability maps in this study may provide initial information for the placement of flood monitoring sensors in the wastewater/stormwater network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harvey, R.: Predictive and spatial analytics for planning inspections of linear sewer infrastructure. Int. J. Environ. Prot. 4, 48–57 (2014)

    Google Scholar 

  2. Ugarelli, R., Venkatesh, G., Brattebø, H., Di Federico, V., Sægrov, S.: Historical analysis of blockages in wastewater pipelines in Oslo and diagnosis of causative pipeline characteristics. Urban Water J. 7, 335–343 (2010)

    Article  Google Scholar 

  3. Ugarelli, R., Venkatesh, G., Brattebø, H., Federico, V.D., Sægrov, S.: Asset management for urban wastewater pipeline networks. J. Infrastruct. Syst. 16, 112–121 (2010)

    Article  Google Scholar 

  4. Chen, C., Liu, Y., Sun, X., Cairano-Gilfedder, C.D., Titmus, S.: Automobile maintenance prediction using deep learning with GIS data. Procedia CIRP 81, 447–452 (2019)

    Article  Google Scholar 

  5. Khorshidi, M.S., Nikoo, M.R., Sadegh, M.: Optimal and objective placement of sensors in water distribution systems using information theory. Water Res. 143, 218–228 (2018)

    Article  Google Scholar 

  6. Sahoo, S.R., Yin, X., Liu, J.: Optimal sensor placement for agro-hydrological systems. AIChE J. 65, e16795 (2019)

    Article  Google Scholar 

  7. Sahoo, K., Mani, S., Das, L., Bettinger, P.: GIS-based assessment of sustainable crop residues for optimal siting of biogas plants. Biomass Bioenerg. 110, 63–74 (2018)

    Article  Google Scholar 

  8. Ahmad, N.F.A., Kaamin, M., Razali, S., Sahat, S.: Geographical information system (GIS) application for flood prediction at Sungai Sembrong (2017)

    Google Scholar 

  9. Boulos, P.F., Schade, T.: A GIS-centric approach for optimal sensor placement in large-scale water distribution systems. In: World Environmental and Water Resources Congress 2007, pp. 1–13 (2007)

    Google Scholar 

  10. Soroush, F., Abedini, M.J.: Optimal selection of number and location of pressure sensors in water distribution systems using geostatistical tools coupled with genetic algorithm. J. Hydroinf. 21, 1030–1047 (2019)

    Article  Google Scholar 

  11. Winter, C.D., Palleti, V.R., Worm, D., Kooij, R.: Optimal placement of imperfect water quality sensors in water distribution networks. Comput. Chem. Eng. 121, 200–211 (2019)

    Article  Google Scholar 

  12. Banik, B.K., Alfonso, L., Di Cristo, C., Leopardi, A.: Greedy algorithms for sensor location in sewer systems. Water 9, 856 (2017)

    Article  Google Scholar 

  13. Sambito, M., Di Cristo, C., Freni, G., Leopardi, A.: Optimal water quality sensor positioning in urban drainage systems for illicit intrusion identification. J. Hydroinf. 22, 46–60 (2019)

    Article  Google Scholar 

  14. Ishizaka, A., Nemery, P.: Multi-Criteria Decision Analysis: Methods and Software. Wiley, Hoboken (2013)

    Book  Google Scholar 

  15. Alami Merrouni, A., Elwali Elalaoui, F., Mezrhab, A., Mezrhab, A., Ghennioui, A.: Large scale PV sites selection by combining GIS and analytical hierarchy process. Case study: eastern morocco. Renew. Energy 119, 863–873 (2018)

    Article  Google Scholar 

  16. Singh, L.K., Jha, M.K., Chowdary, V.M.: Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Cleaner Prod. 142, 1436–1456 (2017)

    Article  Google Scholar 

  17. Gigović, L., Pamučar, D., Božanić, D., Ljubojević, S.: Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: a case study of Vojvodina, Serbia. Renew. Energy 103, 501–521 (2017)

    Article  Google Scholar 

  18. Ali, S., Lee, S.M., Jang, C.M.: Determination of the most optimal on-shore wind farm site location using a GIS-MCDM methodology: evaluating the case of South Korea. Energies 10, 2072 (2017)

    Article  Google Scholar 

  19. Al Garni, H.Z., Awasthi, A.: Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 206, 1225–1240 (2017)

    Article  Google Scholar 

  20. Suh, J., Brownson, J.R.S.: Solar farm suitability using geographic information system fuzzy sets and analytic hierarchy processes: case study of Ulleung island, Korea. Energies 9, 648 (2016)

    Article  Google Scholar 

  21. Noorollahi, E., Fadai, D., Akbarpour Shirazi, M., Ghodsipour, S.H.: Land suitability analysis for solar farms exploitation using gis and Fuzzy Analytic Hierarchy Process (FAHP)—a case study of Iran. Energies 9, 643 (2016)

    Article  Google Scholar 

  22. Adham, A., Sayl, K.N., Abed, R., Abdeladhim, M.A., Wesseling, J.G., Riksen, M., Fleskens, L., Karim, U., Ritsema, C.J.: A GIS-based approach for identifying potential sites for harvesting rainwater in the Western Desert of Iraq. Int. Soil Water Conserv. Res. 6, 297–304 (2018)

    Article  Google Scholar 

  23. Singhai, A., Das, S., Kadam, A.K., Shukla, J.P., Bundela, D.S., Kalashetty, M.: GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India. Environ. Dev. Sustain. 21, 777–797 (2019)

    Article  Google Scholar 

  24. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  25. https://en.wikipedia.org/wiki/%C3%85lesund

  26. https://www.ssb.no/kommunefakta/

  27. https://www.weather-atlas.com/en/norway/alesund-climate#rainfall

  28. Simpson, M., Øie Nilsen, J.E., Ravndal, O., Breili, K., Sande, H., Kierulf, H., Steffen, H., Jansen, E., Carson, M., Vestol, O.: Sea Level Change for Norway: Past and Present Observations and Projections to 2100 (2016)

    Google Scholar 

  29. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Modell. 9, 161–176 (1987)

    Article  Google Scholar 

  30. Buckley, J.J., Feuring, T., Hayashi, Y.: Fuzzy hierarchical analysis revisited. Eur. J. Oper. Res. 129, 48–64 (2001)

    Article  Google Scholar 

  31. Nefeslioglu, H.A., Sezer, E.A., Gokceoglu, C., Ayas, Z.: A Modified Analytical Hierarchy Process (M-AHP) approach for decision support systems in natural hazard assessments. Comput. Geosci. 59, 1–8 (2013)

    Article  Google Scholar 

  32. Chen, C.F.: Applying the Analytical Hierarchy Process (AHP) approach to convention site selection. J. Travel Res. 45, 167–174 (2006)

    Article  Google Scholar 

  33. Wang, C.N., Nguyen, V.T., Thai, H.T.N., Duong, D.H.: Multi-criteria decision making (mcdm) approaches for solar power plant location selection in Viet Nam. Energies 11, 1504 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the Norwegian Climate Service Center, the Norwegian Water Resources and Energy Directorate, the Weather Atlas, and the Mapping Authority for providing data for this research.

This research was funded by the Smart Water Project, Project number 90392200. The data analysis and write-up thesis were operated as a part of the first author’s Ph.D. studies at the Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lam Van Nguyen .

Editor information

Editors and Affiliations

Appendix

Appendix

Appendix a. Result of AHP Questionnaire of Experts

Expert 1.

Criteria

C1

C2

C3

C4

C5

C6

C7

C8

C1

(1,1,1)

(1,1,1)

(3,4,5)

(1,2,3)

(4,5,6)

(1,2,3)

(3,4,5)

(6,7,8)

C2

(1,1,1)

(1,1,1)

(5,6,7)

(1,2,3)

(9,9,9)

(4,5,6)

(7,8,9)

(7,8,9)

C3

(1/5,1/4,1/3)

(1/7,1/6,1/5)

(1,1,1)

(1,1,1)

(2,3,4)

(1,1,1)

(3,4,5)

(3,4,5)

C4

(1/3,1/2,1)

(1/3,1/2,1)

(1,1,1)

(1,1,1)

(2,3,4)

(1,2,3)

(3,4,5)

(5,6,7)

C5

(1/6,1/5,1/4)

(1/9,1/9,1/9)

(1/4,1/3,1/2)

(1/4,1/3,1/2)

(1,1,1)

(2,3,4)

(1,2,3)

(1,2,3)

C6

(1/3,1/2,1)

(1/6,1/5,1/4)

(1,1,1)

(1/3,1/2,1)

(1/4,1/3,1/2)

(1,1,1)

(2,3,4)

(1,2,3)

C7

(1/5,1/4,1/3)

(1/9,1/8,1/7)

(1/5,1/4,1/3)

(1/5,1/4,1/3)

(1/3,1/2,1)

(1/4,1/3,1/2)

(1,1,1)

(1,2,3)

C8

(1/8,1/7,1/6)

(1/9,1/8,1/7)

(1/5,1/4,1/3)

(1/7,1/6,1/5)

(1/3,1/2,1)

(1/3,1/2,1)

(1/3,1/2,1)

(1,1,1)

Expert 2.

Criteria

C1

C2

C3

C4

C5

C6

C7

C8

C1

(1,1,1)

(2,3,4)

(1,2,3)

(3,4,5)

(3,4,5)

(6,7,8)

(7,8,9)

(7,8,9)

C2

(1/4,1/3,1/2)

(1,1,1)

(1,1,1)

(3,4,5)

(2,3,4)

(5,6,7)

(6,7,8)

(6,7,8)

C3

(1/3,1/2,1)

(1,1,1)

(1,1,1)

(2,3,4)

(7,8,9)

(4,5,6)

(6,7,8)

(2,3,4)

C4

(1/5,1/4,1/3)

(1/5,1/4,1/3)

(1/4,1/3,1/2)

(1,1,1)

(1,1,1)

(1,2,3)

(1,1,1)

(4,5,6)

C5

(1/5,1/4,1/3)

(1/4,1/3,1/2)

(1/9,1/8,1/7)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

C6

(1/8,1/7,1/6)

(1/7,1/6,1/5)

(1/6,1/5,1/4)

(1/3,1/2,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1/3,1/2,1)

C7

(1/9,1/8,1/7)

(1/8,1/7,1/6)

(1/8,1/7,1/6)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,2,3)

C8

(1/9,1/8,1/7)

(1/8,1/7,1/6)

(1/4,1/3,1/2)

(1/6,1/5,1/4)

(1,1,1)

(1,2,3)

(1/3,1/2,1)

(1,1,1)

Expert 3.

Criteria

C1

C2

C3

C4

C5

C6

C7

C8

C1

(1,1,1)

(1,1,1)

(1,2,3)

(2,3,4)

(4,5,6)

(3,4,5)

(4,5,6)

(6,7,8)

C2

(1,1,1)

(1,1,1)

(1,1,1)

(2,3,4)

(1,2,3)

(1,2,3)

(5,6,7)

(6,7,8)

C3

(1/3,1/2,1)

(1,1,1)

(1,1,1)

(3,4,5)

(4,5,6)

(2,3,4)

(6,7,8)

(9,9,9)

C4

(1/4,1/3,1/2)

(1/4,1/3,1/2)

(1/5,1/4,1/3)

(1,1,1)

(1/4,1/3,1/2)

(1,1,1)

(4,5,6)

(2,3,4)

C5

(1/6,1/5,1/4)

(1/3,1/2,1)

(1/6,1/5,1/4)

(2,3,4)

(1,1,1)

(1/3,1/2,1)

(1,2,3)

(3,4,5)

C6

(1/5,1/4,1/3)

(1/3,1/2,1)

(1/4,1/3,1/2)

(1,1,1)

(1,2,3)

(1,1,1)

(2,3,4)

(5,6,7)

C7

(1/6,1/5,1/4)

(1/7,1/6,1/5)

(1/8,1/7,1/6)

(1/6,1/5,1/4)

(1/3,1/2,1)

(1/4,1/3,1/2)

(1,1,1)

(1,2,3)

C8

(1/8,1/7,1/6)

(1/8,1/7,1/6)

(1/9,1/9,1/9)

(1/4,1/3,1/2)

(1/5,1/4,1/3)

(1/7,1/6,1/5)

(1/3,1/2,1)

(1,1,1)

Expert 4.

Criteria

C1

C2

C3

C4

C5

C6

C7

C8

C1

(1,1,1)

(1,2,3)

(1,2,3)

(1,1,1)

(4,5,6)

(6,7,8)

(6,7,8)

(6,7,8)

C2

(1/3,1/2,1)

(1,1,1)

(1,2,3)

(2,3,4)

(5,6,7)

(7,8,9)

(5,6,7)

(7,8,9)

C3

(1/3,1/2,1)

(1/3,1/2,1)

(1,1,1)

(1,1,1)

(4,5,6)

(4,5,6)

(1,2,3)

(4,5,6)

C4

(1,1,1)

(1/4,1/3,1/2)

(1,1,1)

(1,1,1)

(3,4,5)

(2,3,4)

(1,2,3)

(7,8,9)

C5

(1/6,1/5,1/4)

(1/7,1/6,1/5)

(1/6,1/5,1/4)

(1/5,1/4,1/3)

(1,1,1)

(1,1,1)

(1,1,1)

(1,2,3)

C6

(1/8,1/7,1/6)

(1/9,1/8,1/7)

(1/6,1/5,1/4)

(1/4,1/3,1/2)

(1,1,1)

(1,1,1)

(3,4,5)

(2,3,4)

C7

(1/8,1/7,1/6)

(1/7,1/6,1/5)

(1/3,1/2,1)

(1/3,1/2,1)

(1,1,1)

(1/5,1/4,1/3)

(1,1,1)

(1,2,3)

C8

(1/8,1/7,1/6)

(1/9,1/8,1/7)

(1/6,1/5,1/4)

(1/9,1/8,1/7)

(1/3,1/2,1)

(1/4,1/3,1/2)

(1/3,1/2,1)

(1,1,1)

Appendix B. The Intermediate Values and Weights Calculated from Experts

Expert 1.

Criteria

l

m

u

A

w (%)

C1

0.14335

0.23676

0.36589

0.24867

23.3

C2

0.22791

0.33332

0.47815

0.34646

32.4

C3

0.06737

0.09844

0.14527

0.10369

9.7

C4

0.0851

0.14128

0.24383

0.15674

14.7

C5

0.03384

0.05814

0.09779

0.06326

5.9

C6

0.04078

0.06769

0.12055

0.07634

7.1

C7

0.0223

0.03608

0.06261

0.04033

3.8

C8

0.01822

0.02829

0.0512

0.03257

3.1

Expert 2.

Criteria

l

m

u

A

w (%)

C1

0.21212

0.33225

0.49516

0.34651

32.9

C2

0.14624

0.21187

0.30908

0.22239

21.2

C3

0.14286

0.2137

0.32629

0.22762

21.6

C4

0.04857

0.07196

0.10806

0.0762

7.2

C5

0.03795

0.04949

0.06773

0.05172

4.9

C6

0.02667

0.03773

0.0594

0.04127

3.9

C7

0.03282

0.04526

0.0621

0.04673

4.4

C8

0.02493

0.03773

0.05991

0.04086

3.9

Expert 3.

Criteria

l

m

u

A

w (%)

C1

0.16446

0.26107

0.39617

0.2739

25.6

C2

0.12396

0.20029

0.30287

0.20904

19.5

C3

0.15865

0.23627

0.36329

0.25274

23.6

C4

0.04685

0.07189

0.117

0.07858

7.3

C5

0.04513

0.07698

0.13802

0.08671

8.1

C6

0.05939

0.0968

0.16273

0.10631

10.0

C7

0.02104

0.03362

0.05689

0.03718

3.5

C8

0.01557

0.02309

0.03768

0.02545

2.4

Expert 4.

Criteria

l

m

u

A

w (%)

C1

0.16623

0.26849

0.40967

0.28146

26.2

C2

0.16506

0.26875

0.43848

0.29076

27.1

C3

0.09123

0.14924

0.25625

0.16557

15.4

C4

0.09578

0.14968

0.22969

0.15838

14.7

C5

0.02925

0.04363

0.06597

0.04628

4.3

C6

0.03517

0.05233

0.08018

0.05589

5.2

C7

0.02682

0.04301

0.07457

0.04814

4.5

C8

0.01623

0.02487

0.04323

0.02811

2.6

Appendix C. AHP Questionnaire Template

Circle one number per row below using the scale:

1 = Equal 3 = Moderate 5 = Strong 7 = Very strong 9 = Extremely strong

1

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Rainfall (C2)

2

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Geology (C3)

3

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Slope (C4)

4

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Population Density (C5)

5

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Critical Infrastructure (C6)

6

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

8

DEM (C1)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

9

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Geology (C3)

10

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Slope (C4)

11

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Population Density (C5)

12

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Critical Infrastructure (C6)

13

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

15

Rainfall (C2)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

16

Geology (C3)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Slope (C4)

17

Geology (C3)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Population Density (C5)

18

Geology (C3)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Critical Infrastructure (C6)

19

Geology (C3)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

21

Geology (C3)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

22

Slope (C4)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Population Density (C5)

23

Slope (C4)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Critical Infrastructure (C6)

24

Slope (C4)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

26

Slope (C4)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

27

Population Density (C5)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Critical Infrastructure (C6)

28

Population Density (C5)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

30

Population Density (C5)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

31

Critical Infrastructure (C6)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Road Network (C7)

33

Critical Infrastructure (C6)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

34

Road Network (C7)

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

Traffic Load (C8)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Nguyen, L., Bui, D.T., Seidu, R. (2021). Identification of Sensitive Factors for Placement of Flood Monitoring Sensors in Wastewater/Stormwater Network Using GIS-Based Fuzzy Analytical Hierarchy Process: A Case of Study in Ålesund, Norway. In: Tien Bui, D., Tran, H.T., Bui, XN. (eds) Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Lecture Notes in Civil Engineering, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-60269-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60269-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60268-0

  • Online ISBN: 978-3-030-60269-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics