Skip to main content

Assessment the Impact of Climate Change and Sea Level Rise on the Unconfined Aquifer at the Red-River Delta of Vietnam: A Case Study at Thai Binh Province

  • Conference paper
  • First Online:
Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 108))

  • 553 Accesses

Abstract

Thai Binh is a coastal province in the Red River Delta in Vietnam, which is bounded by river systems and coastline, causing complicated hydrogeological characteristics of aquifers including the Holocene aquifer. Groundwater plays a crucial role to water supply system in Thai Binh province. The Holocene aquifer is a heterogeneous aquifer interspersed between saltwater and freshwater zones. The total dissolved solids (TDS) of its groundwater ranges from 0.2 to 4.8 g/l. Compare to the research in 1996, the distribution area of the freshwater zone is increased 180 km2 especially in the area that the upper soil layer has good permeability. However, groundwater resources in this province are highly vulnerable to human activities, climate variation and sea-level rise. Insights into impacts of climate variation and sea-level rise is an essential task to sustainable groundwater management in this area. The present study aims to investigate potential impacts of climate change and sea-level rise on the groundwater by using a three-dimensional transient density-driven groundwater flow model (the SEAWAT package) based on the impacts of the groundwater exploitation activity, rainfall, river and sea-level rise. The results obtained revealed that the groundwater table in Holocene aquifer in 2100 was decreased from 0.5 to 0.8 m depending on different locations in the study area. The most affected area ranges within 3.0 km from the shoreline. The areas of the Holocene aquifer with saline water, especially coastal areas such as Tien Hai and Thai Thuy, will increase as seawater intrusion intensifies. The increase in seawater intrusion will vary according to each climate change and sea-level rise scenario. The predicted increase is 79.9 km2 for Scenario B1, 94.1 km2 for Scenario B2, and 109.7 km2 for Scenario A2, whereas the remaining freshwater reserves in the Holocene aquifer for each scenario are 513.243, 505.282, and 492.443 million m3, respectively. This paper concludes with proposed solutions for sustainable groundwater usage in this region. It is our hope that these results will contribute to Vietnam’s sustainable development by providing necessary information for resource managers to control groundwater usage, reduce pollution, limit saline intrusion, and save natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rotzoll, K., Fletcher, C.H.: Assessment of groundwater inundation as a consequence of sea-level rise. Nature Clim. Change 3(5), 477–481 (2013)

    Article  Google Scholar 

  2. Hiscock, K., Tanaka, Y.: Potential impacts of climate change on groundwater resources: from the High Plains of the US to the flatlands of the UK. In: Proceedings of the National Hydrology, Seminar: Water Resources in Ireland and Climate Change, pp. 19–26 (2006)

    Google Scholar 

  3. Ranjan, P., Kazama, S., Sawamoto, M.: Effects of climate change on coastal fresh groundwater resources. Global 16(4), 388–399 (2006)

    Google Scholar 

  4. Giambastiani, B.M.S., Antonellini, M., Oude, E.G., H. P., and Stuurman, R. J. : Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J. Hydrol. 340(1–2), 91–104 (2007)

    Article  Google Scholar 

  5. Werner, A.D., Simmons, C.T.: Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2), 197–204 (2009)

    Article  Google Scholar 

  6. Oude Essink, G.H.P., Van Baaren, E.S., Louw, P.G.B.: Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour. Res. 46(10), 1–16 (2010)

    Article  Google Scholar 

  7. Chang, S.W., Clement, T.P., Simpson, M.J., Lee, K.K.: Does sea-level rise have an impact on saltwater intrusion. Adv. Water Resour. 34(10), 1283–1291 (2011)

    Article  Google Scholar 

  8. Holger, T., Martin-Bordes, J., Gurdak, J.: Climate change effects on groundwater resources. Published by CRC Press/Balkema, A global synthesis of findings and recommendations (2012)

    Google Scholar 

  9. Rasmussen, P., Sonnenborg, T.O., Goncear, G., Hinsby, K.: Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol. Earth Syst. Sci. 17(1), 421–443 (2013)

    Article  Google Scholar 

  10. Luoma, S., Okkonen, J.: Impacts of future climate change and Baltic Sea level rise on groundwater recharge, groundwater levels, and surface leakage in the Hanko aquifer in southern Finland. Water 6(12), 3671–3700 (2014)

    Article  Google Scholar 

  11. Hoover, D.J., Odigie, K.O., Swarzenski, P.W., Barnard, P.: Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. J. Hydrol. Reg. Stud. 11, 234–249 (2017)

    Article  Google Scholar 

  12. Ferguson, G., Gleeson.: Vulnerability of coastal aquifers to groundwater use and climate change. Nature Clim. Change 2(5), 342–345 (2012)

    Google Scholar 

  13. Lemieux, J.M., Hassaoui, J., Molson, J., Therrien, R., Therrien, P., Chouteau, M., Ouellet, M.: Simulating the impact of climate change on the groundwater resources of the Magdalen Islands, Québec. Canada. J. Hydrol. Reg. Stud. 3, 400–423 (2015)

    Google Scholar 

  14. Sreekesh, S., Sreerama Naik, S.R., Rani, S.: Effect of sea level changes on the groundwater quality along the Coast of Ernakulam District. Kerala. J. Clim. Change 4(2), 51–65 (2018)

    Article  Google Scholar 

  15. Tam, V.T., Batelaan, O., Beyen, I.: Impact assessment of climate change on a coastal groundwater system. Central Vietnam. Environ. Earth Sci. 75(10), 1–15 (2016)

    Google Scholar 

  16. Dausman, A., Langevin, C.D., U. S. G. Survey: Movement of the Saltwater Interface in the Surficial Aquifer System in Response to Hydrologic Stresses and Water Management Practices, Broward County, Florida. Scientific Investigations Report 2004–5256, p. 73 (2005)

    Google Scholar 

  17. Batelaan, O., Smedt, F.D.: GIS-based recharge estimation by coupling surface-subsurface water balances. J. Hydrol. 337(3–4), 337–355 (2007)

    Article  Google Scholar 

  18. Shi, W., Lu, C., Werner, A.: D: Assessment of the impact of sea-level rise on seawater intrusion in sloping confined coastal aquifers. J. Hydrol. 586, 124872 (2020)

    Article  Google Scholar 

  19. Mzila, N., Shuy, E. B.: Studies on groundwater salinity distribution in a coastal reclaimed land in Singapore. In: International Conference on Estuaries and coasts, pp. 590–596 (2003)

    Google Scholar 

  20. Sherif, M.M., Singh, V.P.: Effect of climate change on sea water intrusion in coastal aquifers. Hydrol. Process. 13(8), 1277–1287 (1999)

    Article  Google Scholar 

  21. Pauw, P., De Louw, P.G.B., Oude Essink, G.H.P.: Groundwater salinisation in the Wadden Sea area of the Netherlands: Quantifying the effects of climate change, sea-level rise and anthropogenic interferences. Netherlands J. Geosci. 91(3), 373–383 (2012)

    Google Scholar 

  22. Hussain, M.S., Javadi, A.A.: Assessing impacts of sea level rise on seawater intrusion in a coastal aquifer with sloped shoreline boundary. J. Hydro-Environ. Res. 11, 29–41 (2016)

    Article  Google Scholar 

  23. Knott, J.F., Jacobs, J.M., Daniel, J.S., Kirshen, P.: Modeling groundwater rise caused by sea-level rise in coastal new hampshire. J. Coastal Res. 35(1), 143–157 (2019)

    Article  Google Scholar 

  24. Chun, J.A., Lim, C., Kim, D., Kim, J.S.: Assessing impacts of climate change and sea-level rise on seawater intrusion in a coastal aquifer. Water 10(4), 1–11 (2018)

    Article  Google Scholar 

  25. Ministry of Natural Resources and Environment, Climate change and sea level rise scenarios for Vietnam (2016)

    Google Scholar 

  26. Ha, N.T.: Develop and implement the climate change adaptation solution at the coastal region of Vietnam (Vietadapt II), NAWAPI (2016). (in Vietnamese)

    Google Scholar 

  27. Hung, L.D.. et al.:Report on engineering geological and hydrogeological mapping scale 1/50000 for Thai Binh area. Ministry of Natural Resources and Environment (1996). (in Vietnamese)

    Google Scholar 

  28. Kolb, C., Pozzi, M., Samaras, C., VanBriesen, J.M.: Climate change impacts on bromide, trihalomethane formation, and health risks at coastal groundwater utilities. ASCE-ASME J. Risk Uncertainty Eng. Syst. 3(3), 1–11 (2017)

    Google Scholar 

  29. Thuy, T.T.T., Lam, N.V., On, D.H.: Distribution of saline and freshwater in groundwater in Thai Binh province and solution for reasonable exploitation. J. VietNamese Environ. 6, 120–125 (2014)

    Article  Google Scholar 

  30. Ministry of Natural Resources and Environment, Climate change and sea level rise scenarios for Vietnam (2013). (in Vietnamese)

    Google Scholar 

  31. Wang, H., Gao, J. E., Zhang, M. Jie., Li, X. hua., Zhang, S. long., Jia, L.Z.: Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. Catena 127, 80–91 (2015)

    Google Scholar 

  32. Healy, R.W., Cook, P.G.: Using groundwater levels to estimate recharge. J. Hydrol. 10(1), 91–109 (2002)

    Google Scholar 

  33. Jan, C.D., Chen, T.H., Lo, W.C.: Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol. 332(3–4), 348–360 (2007)

    Article  Google Scholar 

  34. Melloul, A., Collin, M.: Hydrogeological changes in coastal aquifers due to sea level rise. Ocean Coast. Manag. 49(5–6), 281–297 (2006)

    Article  Google Scholar 

  35. Carretero, S., Rapaglia, J., Bokuniewicz, H., Kruse, E.: Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa. Argentina. Cont. Shelf Res. 61–62, 62–70 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thi Thanh Thuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thuy, T.T.T., Huy, P.K., Bang, D.D., Anh, P.H. (2021). Assessment the Impact of Climate Change and Sea Level Rise on the Unconfined Aquifer at the Red-River Delta of Vietnam: A Case Study at Thai Binh Province. In: Tien Bui, D., Tran, H.T., Bui, XN. (eds) Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Lecture Notes in Civil Engineering, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-60269-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60269-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60268-0

  • Online ISBN: 978-3-030-60269-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics