Skip to main content

Deep Learning and Edge Computing Solution for High-Performance Computing

  • Chapter
  • First Online:
Deep Learning and Edge Computing Solutions for High Performance Computing

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Deep learning is a promising way to get relevant information from IoT service sensor data embedded in complex situations. Due to its multifaceted structure, deep learning is better suited to the nature of computer drag. So, in the course of this article, we start by introducing deep IoT metrics into the computer environment. Because there is a limited amount of available bandwidth, we are designing a separate load-filling strategy to optimize the performance of deep IoT learning systems using computers (World Health Organization Epilepsy, http://www.who.int/mediacentre/factsheets/fs999/en/)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization Epilepsy, [online] http://www.who.int/mediacentre/factsheets/fs999/en/

  2. M.-P. Hosseini, M.-R. Nazem-Zadeh, D. Pompili, K. Jafari-Khouzani, K. Elisevich, H. Soltanian-Zadeh, Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med. Phys. 43(1), 538–553 (2016)

    Article  Google Scholar 

  3. M.-P. Hosseini, M. R. Nazem-Zadeh, D. Pompili, K. Jafari-Khouzani, K. Elisevich and H. Soltanian-Zadeh, Automatic and manual segmentation of hippocampus in epileptic patients mri, in 6th annual New York Medical Imaging Informatics Symposium (NYMIIS), 2015

    Google Scholar 

  4. B.M. Psaty, A.M. Breckenridge, Mini-sentinel and regulatory science-big data rendered fit and functional. N. Engl. J. Med. 370(23), 2165 (2014)

    Article  Google Scholar 

  5. S. Schneeweiss, Learning from big health care data. N. Engl. J. Med. 370(23), 2161–2163 (2014)

    Article  Google Scholar 

  6. S. Vahidian, S. Aïssa, S. Hatamnia, Relay selection for security-constrained cooperative communication in the presence of eavesdrop-per's overhearing and interference. IEEE Wireless Commun Lett 4(6), 577–580 (2015)

    Article  Google Scholar 

  7. T.X. Tran, A. Hajisami, P. Pandey, D. Pompili, Collaborative mobile edge computing in 5G networks: New paradigms scenarios and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017)

    Article  Google Scholar 

  8. T.X. Tran and D. Pompili, Joint task offloading and resource allocation for multi-server mobile-edge computing networks, arXiv preprint arXiv:1705.00704 (2017)

    Google Scholar 

  9. M.-P. Hosseini, H. Soltanian-Zadeh, S. Akhlaghpoor, Computer-aided diagnosis system for the evaluation of chronic obstructive pulmonary disease on ct images. Tehran Univ Med J TUMS Publ 68(12), 718–725 (2011)

    Google Scholar 

  10. M.-P. Hosseini, A. Hajisami and D. Pompili, Real-time epileptic seizure detection from eeg signals via random subspace ensemble learning, IEEE International Conference on Autonomic Computing (ICAC) (2016)

    Google Scholar 

  11. N. Lu, T. Li, X. Ren and H. Miao, A deep learning scheme for motor imagery classification based on restricted boltzmann machines, IEEE Trans Neural Syst Rehabil Eng, 25, 566 (2016)

    Google Scholar 

  12. X. An, D. Kuang, X. Guo, Y. Zhao and L. He, A deep learning method for classification of eeg data based on motor imagery International Conference on Intelligent Computing, pp. 203–210, (2014)

    Google Scholar 

  13. S.-M. Shams, B. Afshin-Pour, H. Soltanian-Zadeh, G. Zadeh, S.C. Strother, Automated iterative reclustering framework for determining hierarchical functional networks in resting state fmri. Hum. Brain Mapp. 36(9), 3303–3322 (2015)

    Article  Google Scholar 

  14. Z.V. Freudenburg, N.F. Ramsey, M. Wronkiewicz, W.D. Smart, R. Pless, E.C. Leuthardt, Real-time naive learning of neural correlates in ecog electrophysiology. Int J Mach Learn Comput 1(3), 269 (2011)

    Article  Google Scholar 

  15. C.O. Rolim, F.L. Koch, C.B. Westphall, J. Werner, A. Fracalossi, G.S. Salvador, A cloud computing solution for patient's data collection in health care institutions. ETELEMED, 95–99 (2010)

    Google Scholar 

  16. T.H. Laine, C. Lee and H. Suk, Mobile gateway for ubiquitous health care system using zigbee and bluetooth, Proc. IEEE International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 139–145, 2014

    Google Scholar 

  17. S. Yang and M. Gerla, Personal gateway in mobile health monitoring, Proc. IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 636–641 (2011)

    Google Scholar 

  18. M. Mousaei and B. Smida, Optimizing pilot overhead for ultra-reliable short-packet transmission, arXiv preprint arXiv:1705.02753 (2017)

    Google Scholar 

  19. A. Sani, A. Vosoughi, Distributed vector estimation for power-and bandwidth-constrained wireless sensor networks. IEEE Trans. Signal Process. 64(15), 3879–3894 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Iraji, V.D. Calhoun, N.M. Wiseman, E. Davoodi-Bojd, M.R. Avanaki, E.M. Haacke, et al., The connectivity domain: Analyzing resting state fmri data using feature-based data-driven and model-based methods. NeuroImage 134, 494–507 (2016)

    Article  Google Scholar 

  21. D.S. Barron, P.T. Fox, H. Pardoe, J. Lancaster, L.R. Price, et al., Tha-lamic functional connectivity predicts seizure laterality in individual tle patients: Application of a biomarker development strategy. NeuroImage Clin 7, 273–280 (2015)

    Article  Google Scholar 

  22. X. He, G.E. Doucet, M. Sperling, A. Sharan, J.I. Tracy, Reduced thalamocortical functional connectivity in temporal lobe epilepsy. Epilepsia 56(10), 1571–1579 (2015)

    Article  Google Scholar 

  23. D. Meunier, R. Lambiotte, E.T. Bullmore, Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)

    Article  Google Scholar 

  24. G.J. Ortega, R.G. Sola, J. Pastor, Complex network analysis of human ecog data. Neurosci. Lett. 447(2), 129–133 (2008)

    Article  Google Scholar 

  25. G. Alarcon, J.G. Seoane, C. Binnie, M.M. Miguel, J. Juler, C. Polkey, et al., Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120(12), 2259–2282 (1997)

    Article  Google Scholar 

  26. K. Deb, Multi-objective evolutionary algorithms: Introducing bias among pareto-optimal solutions, in Advances in Evolutionary Computing, (Springer, 2003), pp. 263–292

    Google Scholar 

  27. A. Rahimpour, A. Taalimi and H. Qi, Feature encoding in band-limited distributed surveillance systems, ICASSP 2017-IEEE International Conference on Acoustics Speech and Signal Processing (2017)

    Google Scholar 

  28. M.-P. Hosseini, H. Soltanian-Zadeh, K. Elisevich and D. Pompili, Cloud-based deep learning of big eeg data for epileptic seizure prediction, IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2016)

    Google Scholar 

  29. S. Minaee and Y. Wang, Fingerprint recognition using translation invariant scattering network, IEEE Signal Processing in Medicine and Biology Symposium 2015 (2015)

    Google Scholar 

  30. M. Rahmani, G. Atia, High dimensional low rank plus sparse matrix decomposition. IEEE Trans. Signal Process. 2017 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajpoot, V., Patel, A., Manepalli, P.K., Saxena, A. (2021). Deep Learning and Edge Computing Solution for High-Performance Computing. In: Suresh, A., Paiva, S. (eds) Deep Learning and Edge Computing Solutions for High Performance Computing. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-60265-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60265-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60264-2

  • Online ISBN: 978-3-030-60265-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics