Skip to main content

Applications of WGM Microcavities in Physics

  • Chapter
  • First Online:
Optical Whispering Gallery Modes for Biosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 794 Accesses

Abstract

Various applications have been explored for the whispering-gallery-mode microcavities. The microcavity-based laser generation and nonlinear optics potentially allow a micron-sized light source that may be used in a photonic integrated circuit. The miniaturized optical frequency combs serve as a bridge between the radio and optical domains. Besides, the microcavities can be utilized to study the fundamental problems in physics, for instance, the parity and time-reversal symmetric non-Hermitian quantum mechanics. The applications of microcavities in optomechanics and nanoparticle trapping are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The ordinary unitary operators are linear, \(U(\alpha \varPsi )=\alpha U(\varPsi )\) with a complex number \(\alpha \) and a wavefunction \(\varPsi \). In contrast, \(\mathcal {T}\) acting on a superposition state \((\alpha \varPsi +\beta \varPhi )\) gives \(\mathcal {T}(\alpha \varPsi +\beta \varPhi )=\alpha ^{*}\mathcal {T}\varPsi +\beta ^{*}\mathcal {T}\varPhi \), which is called the antilinear (conjugate-linear) relation. Additionally, one has the inner product \(\langle \mathcal {T}\varPsi |\mathcal {T}\varPhi \rangle =\langle \varPsi ^{*}|\varPhi ^{*}\rangle =\langle \varPsi |\varPhi \rangle ^{*}=\langle \varPhi |\varPsi \rangle \). The antilinear operators that satisfy this inner product relation are called the antiunitary operators. For a spinless particle, we have \(\mathcal {T}=K\) with \(U=1\), \(UK=KU\), \(\mathcal {T}^{\dag }=\mathcal {T}\) and \(\mathcal {T}^{2}=1\). For a spin-1/2 particle, one may prove \(\mathcal {T}=UK\) with \(U=\sigma _{y}\), \(UK=-KU\), \(\mathcal {T}^{\dag }=-\mathcal {T}\), and \(\mathcal {T}^{2}=-1\). Here \(\sigma _{y}\) is the y-component of Pauli’s spin matrices.

References

  1. H.M. Tzeng, K.F. Wall, M.B. Long, R.K. Chang, Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt. Lett. 9, 499–501 (1984). https://doi.org/10.1364/OL.9.000499

    Article  ADS  Google Scholar 

  2. S.X. Qian, J.B. Snow, H.M. Tzeng, R.K. Chang, Lasing droplets: highlighting the liquid-air interface by laser emission. Science 231, 486–488 (1986). https://doi.org/10.1126/science.231.4737.486

    Article  ADS  Google Scholar 

  3. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H.P. Loock, G. Gagliardi, Direct sensing in liquids using whispering-gallery-mode droplet resonators. Adv. Opt. Mater. 2, 1155–1159 (2014). https://doi.org/10.1002/adom.201400322

    Article  Google Scholar 

  4. M. Tanyeri, R. Perron, I.M. Kennedy, Lasing droplets in a microfabricated channel. Opt. Lett. 32, 2529–2531 (2007). https://doi.org/10.1364/OL.32.002529

    Article  ADS  Google Scholar 

  5. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Appl. Phys. Lett. 99, 091102 (2011). https://doi.org/10.1063/1.3629814

    Article  ADS  Google Scholar 

  6. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.M. Raimond, S. Haroche, Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54, R1777–R1780 (1996). https://doi.org/10.1103/PhysRevA.54.R1777

    Article  ADS  Google Scholar 

  7. L. Yang, K.J. Vahala, Gain functionalization of silica microresonators. Opt. Lett. 28, 592–594 (2003). https://doi.org/10.1364/OL.28.000592

    Article  ADS  Google Scholar 

  8. E.P. Ostby, K.J. Vahala, Yb-doped glass microcavity laser operation in water. Opt. Lett. 234, 1153–1155 (2009). https://doi.org/10.1364/OL.34.001153

    Article  ADS  Google Scholar 

  9. F. Vanier, F. Côté, M.E. Amraoui, Y. Messaddeq, Y.A. Peter, M. Rochette, Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 240, 5227–5230 (2015). https://doi.org/10.1364/OL.40.005227

    Article  ADS  Google Scholar 

  10. S. Mehrabani, A.M. Armani, Blue upconversion laser based on thulium-doped silica microcavity. Opt. Lett. 238, 4346–4349 (2013). https://doi.org/10.1364/OL.38.004346

    Article  ADS  Google Scholar 

  11. S.I. Shopova, G. Farca, A.T. Rosenberge, W.M.S. Wickramanayake, N.A. Kotov, Microsphere whispering-gallery-mode laser using HgTe quantum dots. Appl. Phys. Lett. 85, 6101–6103 (2004). https://doi.org/10.1063/1.1841459

    Article  ADS  Google Scholar 

  12. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992). https://doi.org/10.1063/1.106688@apl.2019.APLCLASS2019.issue-1

    Article  ADS  Google Scholar 

  13. H. Cao, J.Y. Xu, W.H. Xiang, Y. Ma, S.-H. Chang, S.T. Ho, G.S. Solomon, Optically pumped InAs quantum dot microdisk lasers. Appl. Phys. Lett. 76, 3519–3521 (2000). https://doi.org/10.1063/1.126693

    Article  ADS  Google Scholar 

  14. E.D. Haberer, R. Sharma, C. Meier, A.R. Stonas, S. Nakamura, S.P. DenBaars, E.L. Hu, Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching. Appl. Phys. Lett. 85, 5179–5181 (2004). https://doi.org/10.1063/1.1829167

    Article  ADS  Google Scholar 

  15. A.C. Tamboli, E.D. Haberer, R. Sharma, K.H. Lee, S. Nakamura, E.L. Hu, Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat. Photon. 1, 61–64 (2007). https://doi.org/10.1038/nphoton.2006.52

    Article  ADS  Google Scholar 

  16. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.M. Fedeli, C. Lagahe, R. Baets, Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007). https://doi.org/10.1364/OE.15.006744

    Article  ADS  Google Scholar 

  17. M. Kuwata-Gonokami, R.H. Jordan, A. Dodabalapur, H.E. Katz, M.L. Schilling, R.E. Slusher, S. Ozawa, Polymer microdisk and microring lasers. Opt. Lett. 20, 2093–2095 (1995). https://doi.org/10.1364/OL.20.002093

    Article  ADS  Google Scholar 

  18. T. Grossmann, S. Schleede, M. Hauser, M.B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G.U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, Low-threshold conical microcavity dye lasers. Appl. Phys. Lett. 97, 063304 (2010). https://doi.org/10.1063/1.3479532

    Article  ADS  Google Scholar 

  19. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic, New Jersey, 2008)

    Google Scholar 

  20. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 1, 407–410 (2007). https://doi.org/10.1038/nphoton.2007.93

    Article  ADS  Google Scholar 

  21. C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar, Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018). https://doi.org/10.1364/OE.26.001547

    Article  ADS  Google Scholar 

  22. B. Sturman, I. Breunig, Generic description of second-order nonlinear phenomena in whispering-gallery resonators. J. Opt. Soc. Am. B 28, 2465–2471 (2011). https://doi.org/10.1364/JOSAB.28.002465

    Article  ADS  Google Scholar 

  23. V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki, Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004). https://doi.org/10.1103/PhysRevLett.92.043903

    Article  ADS  Google Scholar 

  24. J.U. Fürst, D.V. Strekalov, D. Elser, M. Lassen, U.L. Andersen, C. Marquardt, G. Leuchs, Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010). https://doi.org/10.1103/PhysRevLett.104.153901

    Article  ADS  Google Scholar 

  25. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng, Phase-matched second-harmonic generation in an on-chip LiNbO\(_{3}\) microresonator. Phys. Rev. Appl. 6, 014002 (2016). https://doi.org/10.1103/PhysRevApplied.6.01400

    Article  ADS  Google Scholar 

  26. X. Zhang, Q.T. Cao, Z. Wang, Y.X. Liu, C.W. Qiu, L. Yang, Q. Gong, Y.F. Xiao, Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019). https://doi.org/10.1038/s41566-018-0297-y

    Article  ADS  Google Scholar 

  27. J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, Ch. Marquardt, G. Leuchs, Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105, 263904 (2010). https://doi.org/10.1103/PhysRevLett.105.263904

    Article  ADS  Google Scholar 

  28. M. Förtsch, J.U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M.V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013). https://doi.org/10.1038/ncomms2838

    Article  ADS  Google Scholar 

  29. A. Otterpohl, F. Sedlmeir, U. Vogl, T. Dirmeier, G. Shafiee, G. Schunk, D.V. Strekalov, H.G.L. Schwefel, T. Gehring, U.L. Andersen, G. Leuchs, C. Marquardt, Squeezed vacuum states from a whispering gallery mode resonator. Optica 6, 1375–1380 (2019). https://doi.org/10.1364/OPTICA.6.001375

    Article  ADS  Google Scholar 

  30. H. Rokhsari, K.J. Vahala, Observation of Kerr nonlinearity in microcavities at room temperature. Opt. Lett. 30, 427–429 (2005). https://doi.org/10.1364/OL.30.000427

    Article  ADS  Google Scholar 

  31. M. Pöllinger, A. Rauschenbeutel, All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect. Opt. Express 18, 17764–17775 (2010). https://doi.org/10.1364/OE.18.017764

    Article  ADS  Google Scholar 

  32. F.H. Suhailin, N. Healy, Y. Franz, M. Sumetsky, J. Ballato, A.N. Dibbs, U.J. Gibson, A.C. Peacock, Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Opt. Express 23, 17263–17268 (2015). https://doi.org/10.1364/OE.23.017263

    Article  ADS  Google Scholar 

  33. T. Carmon, K.J. Vahala, Visible continuous emission from a silica microphotonic device by third harmonic generation. Nat. Phys. 3, 430–435 (2007). https://doi.org/10.1038/nphys601

    Article  Google Scholar 

  34. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Kerr-nonlinearity optical parametric oscillation in an ultrahigh-\(Q\) toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004). https://doi.org/10.1103/PhysRevLett.93.083904

    Article  ADS  Google Scholar 

  35. A.A. Savchenkov, A.B. Matsko, D. Strekalov, M. Mohageg, V.S. Ilchenko, L. Maleki, Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004). https://doi.org/10.1103/PhysRevLett.93.243905

    Article  ADS  Google Scholar 

  36. E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New Jersey, 1959)

    Google Scholar 

  37. R. Haydock, M.J. Kelly, Electronic structure from non-Hermitian representations of the Hamiltonian. J. Phys. C: Solid State Phys. 8, L290–L293 (1975). https://doi.org/10.1088/0022-3719/8/13/003

    Article  ADS  Google Scholar 

  38. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having \(\cal{P}\cal{T}\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998). https://doi.org/10.1103/PhysRevLett.80.5243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of \(\cal{P}\cal{T}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). https://doi.org/10.1103/PhysRevLett.103.093902

    Article  ADS  Google Scholar 

  40. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Observation of parity time symmetry in optics. Nat. Phys. 6, 192–195 (2010). https://doi.org/10.1038/nphys1515

    Article  Google Scholar 

  41. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Theory of coupled optical \(\cal{PT}\)-symmetric structures. Opt. Lett. 32, 2632–2634 (2007). https://doi.org/10.1364/OL.32.002632

    Article  ADS  Google Scholar 

  42. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Beam dynamics in \(\cal{PT}\) symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). https://doi.org/10.1103/PhysRevLett.100.103904

    Article  ADS  Google Scholar 

  43. B. Bagchi, C. Quesne, M. Znojil, Generalized continuity equation and modified normalization in \(\cal{PT}\) symmetric quantum mechanics. Mod. Phys. Lett. A 16, 2047–2057 (2001). https://doi.org/10.1142/S0217732301005333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. B. Peng, Ş.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Yang, Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). https://doi.org/10.1038/nphys2927

    Article  Google Scholar 

  45. F. Zhang, Y. Feng, X. Chen, L. Ge, W. Wan, Synthetic anti-PT symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020). https://doi.org/10.1103/PhysRevLett.124.053901

    Article  ADS  Google Scholar 

  46. K.J. Boller, A. Imamoğlu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991). https://doi.org/10.1103/PhysRevLett.66.2593

    Article  ADS  Google Scholar 

  47. C.L.G. Alzar, M.A.G. Martinez, P. Nussenzveig, Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002). https://doi.org/10.1119/1.1412644

    Article  ADS  Google Scholar 

  48. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008). https://doi.org/10.1103/PhysRevLett.101.047401

    Article  ADS  Google Scholar 

  49. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Optomechanically induced transparency. Science 330, 1520–1523 (2010). https://doi.org/10.1126/science.1195596

    Article  ADS  Google Scholar 

  50. D.D. Smith, H. Chang, K.A. Fuller, A.T. Rosenberger, R.W. Boyd, Coupled-resonator-induced transparency. Phys. Rev. A 69, 063804 (2004). https://doi.org/10.1103/PhysRevA.69.063804

    Article  ADS  Google Scholar 

  51. A. Naweed, G. Farca, S.I. Shopova, A.T. Rosenberger, Induced transparency and absorption in coupled whispering-gallery microresonators. Phys. Rev. A 71, 043804 (2005). https://doi.org/10.1103/PhysRevA.71.043804

    Article  ADS  Google Scholar 

  52. C.O. Weiss, G. Kramer, B. Lipphardt, H. Schnatz, in Frequency Measurement and Control Advanced Techniques and Future Trends, ed. by A.N. Luiten (Springer, Berlin, 2000), pp. 215–247

    Google Scholar 

  53. T. Fortier, E. Baumann, 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019). https://doi.org/10.1038/s42005-019-0249-y

    Article  Google Scholar 

  54. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000). https://doi.org/10.1126/science.288.5466.635

    Article  ADS  Google Scholar 

  55. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000). https://doi.org/10.1364/OL.25.000025

    Article  ADS  Google Scholar 

  56. L.S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Optical frequency synthesis and comparison with uncertainty at the \(10^{-19}\) level. Science 303, 1843–1945 (2004). https://doi.org/10.1126/science.1095092

    Article  ADS  Google Scholar 

  57. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332, 555–559 (2011). https://doi.org/10.1126/science.1193968

    Article  ADS  Google Scholar 

  58. P. Del’Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg, Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011). https://doi.org/10.1103/PhysRevLett.107.063901

    Article  ADS  Google Scholar 

  59. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T.J. Kippenberg, Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008). https://doi.org/10.1103/PhysRevLett.101.053903

    Article  ADS  Google Scholar 

  60. C.K. Law, Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995). https://doi.org/10.1103/PhysRevA.51.2537

    Article  ADS  Google Scholar 

  61. R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger, T.J. Kippenberg, Radiation-pressure-driven vibrational modes in ultrahigh-\(Q\) silica microspheres. Opt. Lett. 32, 2200–2202 (2007). https://doi.org/10.1364/OL.32.002200

    Article  ADS  Google Scholar 

  62. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T.J. Kippenberg, High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. 10, 095015 (2008). https://doi.org/10.1088/1367-2630/10/9/095015

    Article  ADS  Google Scholar 

  63. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  64. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006). https://doi.org/10.1103/PhysRevLett.97.243905

    Article  ADS  Google Scholar 

  65. S. Arnold, D. Keng, S.I. Shopova, S. Holler, W. Zurawsky, F. Vollmer, Whispering gallery mode carousel a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17, 6230–6238 (2009). https://doi.org/10.1364/OE.17.006230

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vollmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vollmer, F., Yu, D. (2020). Applications of WGM Microcavities in Physics. In: Optical Whispering Gallery Modes for Biosensing. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-60235-2_4

Download citation

Publish with us

Policies and ethics