Skip to main content

Sensing with Light

  • Chapter
  • First Online:
Optical Whispering Gallery Modes for Biosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 743 Accesses

Abstract

The interaction of highly coherent light and matter is the key in the science of measurement. In the classical electromagnetic theory, the absorption and dispersion properties of the light propagation in a medium are described by the classical Lorentz oscillator model. The unavoidable phase and intensity fluctuations of a light field, which are commonly characterized by the first- and second-order correlation functions, respectively, broaden the light spectrum and restrict its practical applications in metrology. In order to suppress the spectral linewidth, the light’s frequency is usually stabilized to an optical resonator. Several light-based sensing applications, such as the gravity-wave detection and optical clocks, are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The one-dimensional Dirac delta function is defined as

    $$\begin{aligned} \delta (x-x_{0})= {\left\{ \begin{array}{ll} \infty &{} x=x_{0} \\ 0 &{} x\ne x_{0} \end{array}\right. }, \end{aligned}$$

    with the integral

    $$\begin{aligned} \int _{a}^{b}\delta (x-x_{0})dx= {\left\{ \begin{array}{ll} 1 &{} a<x_{0}<b \\ 0 &{} x_{0}<a~\text {or}~x_{0}>b \end{array}\right. }. \end{aligned}$$

    The delta function has the scaling and symmetry properties, \(\delta (\alpha x)=\delta (x)/|\alpha |\) and \(\delta (-x)=\delta (x)\). In the three-dimensional case, the delta function takes the form

    $$\begin{aligned} \delta (\mathbf{r} -\mathbf{r} _{0})=\delta (x-x_{0})\delta (y-y_{0})\delta (z-z_{0}). \end{aligned}$$

    The volume integral of \(\delta (\mathbf{r} -\mathbf{r} _{0})\) against a continuous function \(f(\mathbf{r} )\) reads as

    $$\begin{aligned} \int _{V}f(\mathbf{r} )\delta (\mathbf{r} -\mathbf{r} _{0})d^{3}{} \mathbf{r} = {\left\{ \begin{array}{ll} f(\mathbf{r} _{0}) &{} \mathbf{r} _{0}\in V \\ 0 &{} \mathbf{r} _{0}\notin V \end{array}\right. }. \end{aligned}$$

    .

  2. 2.

    The Bohr radius is defined as \(a_{0}=\frac{4\pi \varepsilon _{0}\hbar ^{2}}{m_{\text {e}}e^{2}}\) with the reduced Planck’s constant \(\hbar =1.054\times 10^{-34}\) \(\text {J}\cdot \text {s}\) and the mass of electron \(m_{\text {e}}=9.11\times 10^{-31}\) kg.

  3. 3.

    1 \(\text {a}.\text {u}.=\frac{e^{2}a_{0}^{2}}{E_{\text {h}}}\) with the Hartree energy \(E_{\text {h}}=\frac{\hbar ^{2}}{m_{\text {e}}a_{0}^{2}}=4.35974\times 10^{-18}\) J.

  4. 4.

    In 1958, Schawlow and Townes derived the fundamental (quantum-noise-limited) limit for the spectral linewidth \(\varDelta \omega _{\text {FWHM}}\) of a good-cavity laser with the Lorentzian broadening, i.e., the Schawlow–Townes linewidth [23], \(\varDelta \omega _{\text {FWHM}}=\hbar \omega _{0}\varDelta \omega _{\text {cav}}^{2}/P_{\text {out}}\), where \(\varDelta \omega _{\text {cav}}\) is the linewidth of the cold cavity and \(P_{\text {out}}\) is the laser output power. In 1967, Lax proved that the correct linewidth should be \(\varDelta \omega _{\text {FWHM}}=\hbar \omega _{0}\varDelta \omega _{\text {cav}}^{2}/2P_{\text {out}}\) [24]. The Schawlow–Townes linewidth can be generalized to the form \(\varDelta \omega _{\text {FWHM}}=n_{\text {sp}}\hbar \omega _{0}\varDelta \omega _{\text {cav}}^{2}/2P_{\text {out}}\) [25] with the inversion factor \(n_{\text {sp}}=N_{2}/(N_{2}-N_{1})\). The parameters \(N_{1,2}\) are the populations of the active particles in two lasing states 1 (lower) and 2 (upper), respectively. One has \(n_{\text {sp}}=1\) for an ideal four-level laser.

  5. 5.

    \(R=\frac{e\eta \lambda }{hc}\) with the Planck’s constant \(h=6.626\times 10^{-34}\) \(\text {J}\cdot \text {s}\).

References

  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995). http://orcid.org/10.1126/science.269.5221.198

  2. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995). http://orcid.org/10.1103/PhysRevLett.75.3969

  3. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015). http://orcid.org/https://doi.org/10.1038/nphoton.2015.5

  4. S.M. Brewer, J.S. Chen, A.M. Hankin, E.R. Clements, C.W. Chou, D.J. Wineland, D.B. Hume, D.R. Leibrandt, \(^{27}{\rm Al}^{+}\) Quantum-Logic Clock with a Systematic Uncertainty below \({10}^{-18}\). Phys. Rev. Lett. 123, 033201 (2019). http://orcid.org/10.1103/PhysRevLett.123.033201

  5. B.P. Abbott, R. Abbott, T.D. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). http://orcid.org/10.1103/PhysRevLett.116.061102

  6. B.P. Abbott, R. Abbott, T.D. Abbott et al., GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017). http://orcid.org/10.1103/PhysRevLett.119.141101

  7. A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987). http://orcid.org/10.1126/science.3547653

  8. J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-\(Q\) microresonator. Nat. Photon. 4, 46–49 (2010). http://orcid.org/10.1038/nphoton.2009.237

  9. A.H. Zewail, Laser femtochemistry. Science 242, 1645–1653 (1988). http://orcid.org/10.1126/science.242.4886.1645

  10. J.G. Ren, P. Xu, H.L. Yong et al., Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017). http://orcid.org/https://doi.org/10.1038/nature23675

  11. S.K. Liao, W.Q. Cai, W.Y. Liu et al., Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017). http://orcid.org/https://doi.org/10.1038/nature23655

  12. S.K. Liao, W.Q. Cai, J. Handsteiner et al., Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018). http://orcid.org/10.1103/PhysRevLett.120.030501

  13. D.J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, 1981)

    Google Scholar 

  14. J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. A 175, 343–349 (1884). http://orcid.org/https://doi.org/10.1098/rstl.1884.0016

  15. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)

    MATH  Google Scholar 

  16. S. Das, R. Kumar, T.J. George, A. Bansal, N.K. Lautre, A.K. Sharma, Physics of electrostatic resonance with negative permittivity and imaginary index of refraction for illuminated plasmoid in the experimental set up for microwave near field applicator. Fund. J. Modern Phys. 5, 19–46 (2013)

    Google Scholar 

  17. D.S. Kliger, J.W. Lewis, C.E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990)

    Google Scholar 

  18. L. Onsager, Electric moments of molecules in liquids. J. Amer. Chem. Soc. 58, 1486–1493 (1936). http://orcid.org/https://doi.org/10.1021/ja01299a050

  19. H.A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. (Dover Books, New York, 2011)

    Google Scholar 

  20. R.C. Hilborn, Einstein coefficients, cross sections, f values, dipole moments, and all that. Amer. J. Phys. 50, 982–986 (1982). http://orcid.org/https://doi.org/10.1119/1.12937

  21. H. Katori, M. Takamoto, V.G. Pal’chikov, V.D. Ovsiannikov, Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003). http://orcid.org/10.1103/PhysRevLett.91.173005

  22. T. Okoshi, K. Kikuchi, A. Nakayama, Novel method for high resolution measurement of laser output spectrum. Electron. Lett. 16, 630–631 (1980). http://orcid.org/10.1049/el:19800437

  23. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958). http://orcid.org/10.1103/PhysRev.112.1940

  24. M. Lax, Classical noise. v. noise in self-sustained oscillators. Phys. Rev. 160, 290–307 (1967). https://doi.org/10.1103/PhysRev.160.290

  25. O. Svelto, Principles of Lasers, 5th edn. (Springer, Berlin, 2010), p. 298

    Book  Google Scholar 

  26. D.J.C. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  27. D.S. Elliott, R. Roy, S.J. Smith, Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982). http://orcid.org/10.1103/PhysRevA.26.12

  28. A. Godone, F. Levi, About the radiofrequency spectrum of a phase noise modulated carrier, in Proceedings of the 1998 European Frequency and Time Forum (1998), pp. 392–396

    Google Scholar 

  29. G. Di Domenico, S. Schilt, P. Thomann, Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010). https://doi.org/10.1364/AO.49.004801

    Article  ADS  Google Scholar 

  30. R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 1046–1048 (1956). https://doi.org/10.1038/1781046a0

  31. B. Darquié, M.P.A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, P. Grangier, Controlled single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005). http://orcid.org/10.1126/science.1113394

  32. R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 2000)

    MATH  Google Scholar 

  33. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012). https://doi.org/10.1038/nphoton.2012.217

  34. D.G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J.M. Robinson, J. Ye, F. Riehle, U. Sterr, \(1.5 \mu \rm m\it \) Lasers with Sub-10 mHz Linewidth. Phys. Rev. Lett. 118, 263202 (2017). https://doi.org/10.1103/PhysRevLett.118.263202

  35. C. Schneider, P. GoldS, S.Höfling Reitzenstein, M. Kamp, Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl. Phys. B 122, 19 (2016). https://doi.org/10.1007/s00340-015-6283-x

  36. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Whispering gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992). http://orcid.org/10.1063/1.106688

  37. M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko, Ultimate \(Q\) of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996). https://doi.org/10.1364/OL.21.000453

    Article  ADS  Google Scholar 

  38. A.M. Armani, D.K. Armani, B. Min, K.J. Vahala, Ultra-high-\(Q\) microcavity operation in H\(_{2}\)O and D\(_{2}\)O. Appl. Phys. Lett. 87, 151118 (2005). https://doi.org/10.1063/1.2099529

    Article  ADS  Google Scholar 

  39. P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009). https://doi.org/10.1063/1.3107263

    Article  ADS  Google Scholar 

  40. H. Li, Y. Wang, L. Wei, P. Zhou, Q. Wei, C. Cao, Y. Fang, Y. Yu, P. Wu, Experimental demonstrations of high-Q superconducting coplanar waveguide resonators. Chin. Sci. Bull. 58, 2413–2417 (2013). https://doi.org/10.1007/s11434-013-5882-3

    Article  Google Scholar 

  41. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010). http://orcid.org/10.1103/PhysRevLett.105.237001

  42. K.B. MacAdam, A. Steinbach, C. Wieman, A narrow band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098–1111 (1992). https://doi.org/10.1119/1.16955

    Article  ADS  Google Scholar 

  43. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983). https://doi.org/10.1007/BF00702605

    Article  ADS  Google Scholar 

  44. K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004). http://orcid.org/10.1103/PhysRevLett.93.250602

  45. T.W. Hansch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980). https://doi.org/10.1016/0030-4018(80)90069-3

    Article  ADS  Google Scholar 

  46. W. Schottky, Über spontane stromschwankungen in verschiedenen elektrizitätsleitern. Ann. Phys. 36, 541–567 (1918). https://doi.org/10.1002/andp.19183622304

    Article  Google Scholar 

  47. J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928). http://orcid.org/10.1103/PhysRev.32.97

  48. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928). http://orcid.org/10.1103/PhysRev.32.110

  49. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Frequency modulation (FM) spectroscopy. Appl. Phys. B 32, 145–152 (1983). https://doi.org/10.1007/BF00688820

    Article  ADS  Google Scholar 

  50. H.R. Carleton, W.T. Maloney, A balanced optical heterodyne detector. Appl. Opt. 7, 1241–1243 (1968). https://doi.org/10.1364/AO.7.001241

    Article  ADS  Google Scholar 

  51. R. Stierlin, R. Bättig, P.D. Henchoz, H.P. Weber, Excess-noise suppression in a fibre-optic balanced heterodyne detection system. Opt. Q. Electron. 18, 445–454 (1986). https://doi.org/10.1007/BF02041170

    Article  Google Scholar 

  52. J. Kim, S. Takeuchi, Y. Yamamoto, H.H. Hogue, Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999). https://doi.org/10.1063/1.123404

    Article  ADS  Google Scholar 

  53. E. Waks, K. Inoue, W.D. Oliver, E. Diamanti, Y. Yamamoto, High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Q. Electron. 9, 1502–1511 (2003). http://orcid.org/10.1109/JSTQE.2003.820917

  54. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009). https://doi.org/10.1038/nphoton.2009.230

    Article  ADS  Google Scholar 

  55. G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  56. A.A. Michelson, E.W. Morley, On the relative motion of the earth and the luminiferous ether. Amer. J. Sci. 34, 333–345 (1887). http://orcid.org/10.2475/ajs.s3-34.203.333

  57. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015). http://orcid.org/10.1103/RevModPhys.87.637

  58. D.W. Allan, Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966). http://orcid.org/10.1109/PROC.1966.4634

  59. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993). http://orcid.org/10.1103/PhysRevA.47.3554

  60. R.H. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953). http://orcid.org/10.1103/PhysRev.89.472

  61. M. Takamoto, F.L. Hong, R. Higashi, H. Katori, An optical lattice clock. Nature 435, 321–324 (2005). https://doi.org/10.1038/nature03541

    Article  ADS  Google Scholar 

  62. E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J.M. Robinson, G.E. Marti, D.G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, J. Ye, Demonstration of \(4.8\times 10^{-17}\) stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019). https://doi.org/10.1038/s41566-019-0493-4

  63. M. Takamoto, T. Takano, H. Katori, Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. 5, 288–292 (2011). https://doi.org/10.1038/nphoton.2011.34

    Article  ADS  Google Scholar 

  64. T. Middelmann, S. Falke, C. Lisdat, U. Sterr, High accuracy correction of blackbody radiation shift in an optical lattice clock. Phys. Rev. Lett. 109, 263004 (2012). http://orcid.org/10.1103/PhysRevLett.109.263004

  65. T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, J. Ye, Systematic evaluation of an atomic clock at \(2\times 10^{-18}\) total uncertainty. Nat. Commun. 6, 6896 (2015). https://doi.org/10.1038/ncomms7896

    Article  ADS  Google Scholar 

  66. W.F. McGrew, X. Zhang, R.J. Fasano, S.A. Schäffer, K. Beloy, D. Nicolodi, R.C. Brown, N. Hinkley, G. Milani, M. Schioppo, T.H. Yoon, A.D. Ludlow, Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018). https://doi.org/10.1038/s41586-018-0738-2

    Article  ADS  Google Scholar 

  67. S. Blatt, A.D. Ludlow, G.K. Campbell, J.W. Thomsen, T. Zelevinsky, M.M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.L. Hong, H. Katori, V.V. Flambaum, New limits on coupling of fundamental constants to gravity using \(^{87}\rm Sr\) optical lattice clocks. Phys. Rev. Lett. 100, 140801 (2008). http://orcid.org/10.1103/PhysRevLett.100.140801

  68. R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}{\rm Yb}^{+}\) and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014). http://orcid.org/10.1103/PhysRevLett.113.210801

  69. S. Kolkowitz, I. Pikovski, N. Langellier, M.D. Lukin, R.L. Walsworth, J. Ye, Gravitational wave detection with optical lattice atomic clocksPhys. Rev. D 94, 124043 (2016). http://orcid.org/10.1103/PhysRevD.94.124043

  70. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, H. Katori, Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photon. 10, 662–666 (2016). https://doi.org/10.1038/nphoton.2016.159

    Article  ADS  Google Scholar 

  71. A. Derevianko, M. Pospelov, Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014). https://doi.org/10.1038/nphys3137

    Article  Google Scholar 

  72. P. Wcisło, P. Ablewski, K. Beloy, S. Bilicki, M. Bober, R. Brown, R. Fasano, R. Ciuryło, H. Hachisu, T. Ido, J. Lodewyck, A. Ludlow, W. McGrew, P. Morzyński, D. Nicolodi, M. Schioppo, M. Sekido, R. Le Targat, P. Wolf, X. Zhang, B. Zjawin, and M. Zawada, New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018). https://doi.org/10.1126/sciadv.aau4869

  73. H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, Berlin, 1999)

    Book  Google Scholar 

  74. C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schaußler, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011). https://doi.org/10.1038/nature09827

    Article  ADS  Google Scholar 

  75. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). https://doi.org/10.1038/415039a

    Article  ADS  Google Scholar 

  76. N. Schlosser, G. Reymond, I. Protsenko, P. Grangier, Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001). https://doi.org/10.1038/35082512

    Article  ADS  Google Scholar 

  77. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys, An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016). http://orcid.org/10.1126/science.aah3778

  78. M. Endres, H. Bernien, A. Keesling, H. Levine, E.R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, M.D. Lukin, Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016). http://orcid.org/10.1126/science.aah3752

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vollmer .

Problems

Problems

1.1

A light field is polarized in the x-direction and propagates along the z-axis, \(\mathbf{E} (\mathbf{r} ,t)=\mathbf{e} _{x}E^{(+)}(z,t)+\mathbf{e} _{x}E^{(-)}(z,t)\), in a medium. The electric polarization density of the medium \(\mathbf{P} \) may be written in a similar way, \(\mathbf{P} (\mathbf{r} ,t)=\mathbf{e} _{x}P^{(+)}(z,t)+\mathbf{e} _{x}P^{(-)}(z,t)\). Inserting the above expressions into (1.40), one obtains

$$\begin{aligned} \left( \frac{\partial }{\partial z}+\frac{1}{c}\frac{\partial }{\partial t}\right) \left( -\frac{\partial }{\partial z}+\frac{1}{c}\frac{\partial }{\partial t}\right) E^{(+)}(z,t)=-\mu _{0}\frac{\partial ^{2}}{\partial t^{2}}P^{(+)}(z,t). \end{aligned}$$

The positive-frequency parts \(E^{(+)}(z,t)\) and \(P^{(+)}(z,t)\) may be written in the following way:

where and are the slowly varying amplitudes. The wavenumber \(k_{0}\) is related to the light’s central frequency \(\omega _{0}\) via \(k_{0}=\omega _{0}/c\). Derive the following equation:

(1.181)

in the slowly varying envelope approximation (SVEA)

Fig. 1.19
figure 19

Boundary conditions. Stokes’ theorem is applied on (a) while Gauss’s theorem is used on (b)

1.2

Derive the interface conditions for the electromagnetic fields (1.45) and (1.48) by integrating Faraday’s law (1.1a) and Ampère’s law (1.1d) over an oriented smooth surface S bounded by a closed boundary curve C across the interface [see Fig. 1.19a]. Stokes’ theorem

$$\begin{aligned} \int _{S}(\nabla \times \mathbf{F} )\cdot d\mathbf{S} =\oint _{C}{} \mathbf{F} \cdot d\mathbf{l} \end{aligned}$$
(1.182)

should be applied. The curve C is positively oriented, meaning that the surface S is always on your left side when you are walking along the curve C. The direction of the element vector \(d\mathbf{S} \) is parallel to the unit normal vector of the curve C that follows the right-hand rule. The vector field \(\mathbf{F} \) may be \(\mathbf{E} \) and \(\mathbf{H} \).

Derive the boundary conditions (1.46) and (1.47) by integrating (1.1b) and (1.1c) over a volume V surrounded by a surface S across the interface [see Fig. 1.19b]. Gauss’s theorem

$$\begin{aligned} \int _{V}(\nabla \cdot \mathbf{F} )dV=\oint _{S}{} \mathbf{F} \cdot d\mathbf{S} \end{aligned}$$
(1.183)

should be used. Here, the vector field \(\mathbf{F} \) may be \(\mathbf{D} \) and \(\mathbf{B} \). The outward-pointing element vector \(d\mathbf{S} \) is normal to the locally planar surface.

1.3

We consider the solution to Poisson’s equation within a volume V. The associated Green’s function \(G(\mathbf{r} ,\mathbf{r} _{0})\) is defined as

$$\begin{aligned} \nabla ^{2}G(\mathbf{r} ,\mathbf{r} _{0})=\delta (\mathbf{r} -\mathbf{r} _{0}), \end{aligned}$$
(1.184)

where \(G(\mathbf{r} ,\mathbf{r} _{0})\) may be viewed as a potential generated by a point source located at \(\mathbf{r} _{0}\in V\). As \(|\mathbf{r} -\mathbf{r} _{0}|\rightarrow \infty \), \(G(\mathbf{r} ,\mathbf{r} _{0})\) approaches zero. Equation (1.26) is the solution of the above Poisson’s equation. Derive (1.26) by using the fact \(\int _{V}\delta (\mathbf{r} )dV=1\) and Gauss’s theorem.

Fig. 1.20
figure 20

Hansch–Couillaud frequency stabilization. a Schematic diagram with the symbols: LP (linear polarizer), PBS (polarization beam splitter), and PD (photodetector). b Polarization spectroscopy as a function of the detuning \((\omega -\omega _{\text {FP}})\). The amplitude reflection coefficients of mirrors of the FP resonator are both \(r_{1,2}=0.9\). The free spectral range of the Fabry–Pérot resonator is \(\omega _{\text {FSR}}\)

1.4

The frequency stabilization scheme based on the Hansch–Couillaud method [45] is illustrated in Fig. 1.20a. The incident light (frequency \(\omega \)) output from a laser system is vertically polarized and enters a Fabry–Pérot resonator (central frequency \(\omega _{\text {FP}}\)) via a reflection mirror. A linear polarizer, whose transmission direction forms a \(45^{\circ }\) angle with respect to the incident beam’s polarization, is inserted into the Fabry–Pérot resonator. The reflected wave contains two components with the respective field amplitude \(E_{\parallel }=(E_{0}/\sqrt{2})\cdot r_{\text {FP}}(\omega )\) and \(E_{\perp }=(E_{0}/\sqrt{2})\cdot r_{1}\), where \(E_{0}\) is the amplitude of the incident beam, \(r_{\text {FP}}(\omega )\) is the amplitude reflection coefficient of the Fabry–Pérot resonator [see (1.139a)] , and \(r_{1}\) is the amplitude reflection coefficient of the resonator’s mirror M1. The reflected light passes through a \(\lambda /4\) waveplate and enters a polarization beam splitter (PBS). We assume that the fast axis of the \(\lambda /4\) waveplate is parallel to the transmission direction of the intracavity linear polarizer. Using the Jones calculus, the light fields output from the PBS are given by

$$\begin{aligned} \begin{pmatrix} E_{1} \\ E_{2} \end{pmatrix}=\frac{1}{2} \begin{pmatrix} 1&{} -1 \\ -1 &{} 1 \end{pmatrix} \begin{pmatrix} 1&{} 0 \\ 0 &{} i \end{pmatrix} \begin{pmatrix} E_{\parallel } \\ E_{\perp } \end{pmatrix}. \end{aligned}$$
(1.185)

The intensities of the outputs from the PBS \(I_{1}\propto |E_{1}|^{2}\) and \(I_{2}\propto |E_{2}|^{2}\) are measured by two photodetectors, respectively. The difference \((I_{1}-I_{2})\) gives the error signal [see Fig. 1.20b]. This error signal is finally fed back into the laser, stabilizing the frequency \(\omega \). Derive the error signal \((I_{1}-I_{2})\).

1.5

In a \(^{87}\)Sr optical lattice clock, the \(^{87}\)Sr atoms are confined in a one-dimensional optical lattice with a potential depth of 20 \(\upmu \)K. The lattice lasers operate at the red-detuned magic wavelength 813 nm. The clock transition wavelength is 698 nm. Estimate the harmonic-oscillation frequency of the atoms moving inside a lattice site and the Lamb–Dicke parameter.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vollmer, F., Yu, D. (2020). Sensing with Light. In: Optical Whispering Gallery Modes for Biosensing. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-60235-2_1

Download citation

Publish with us

Policies and ethics