Skip to main content

Practical Accounting for Uncertainties in Data-Driven Landslide Susceptibility Models. Examples from the Lanzhou Case Study

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Part of the book series: ICL Contribution to Landslide Disaster Risk Reduction ((CLDRR))

Included in the following conference series:

Abstract

Modeling of a complex environment is inevitably associated with uncertainties arising from the model design or data errors. In the uncertainty assessment, the bias (related to accuracy) and the random error (related to precision) are distinguished. Recent reviews of case studies, which used data-driven methods for landslide susceptibility assessment (LSA), indicate a general lack of appropriate evaluation of uncertainties. In this paper, we discuss practical techniques to account for uncertainties in LSA, relying majorly on the examples from the project “Landslide Hazard and Risk Assessment for Lanzhou” (LHARA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Derbyshire E (2001) Geological Hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci Rev 54:231–260

    Article  Google Scholar 

  • Derbyshire E, Dijkstra TA, Unwin D et al (2000) Slope instability distribution mapping. In: Derbyshire E, Meng X, Dijkstra TA (eds) Landslides in the thick loess terrain of North-West China, Wiley, pp 230–242

    Google Scholar 

  • Fabbri A, Chung C-J (2019) Landslide susceptibility prediction maps: from blind-testing to uncertainty of class membership: a review of past and present developments. In: Pourghasemi HR, Rossi M (eds) Natural hazards GIS-based spatial modeling using data mining techniques. Springer Nature, Switzerland (ISBN 978-3-319-73382-8)

    Google Scholar 

  • Fuchs M, Torizin J, Wang L, Tong B, Balzer D, Chen L, Li A, Wan L (2019) Identification and temporally-spatial quantification of geomorphic relevant changes by construction projects in loess landscapes: case study Lanzhou City, NW China. Big Earth Data 3(4):395–410

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  Google Scholar 

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at an operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat Hazard Earth Sys 14:569–588

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M et al (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M et al (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Jolma A, Norton J (2005) Methods of uncertainty treatment in environmental models. Environ Modell Software. 20:979–980

    Article  Google Scholar 

  • Li P, Qian H, Wu J (2014) Environment: accelerate research on land creation. Nature 510:29–31

    Article  Google Scholar 

  • Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat Hazard Earth Sys. 14:95–118

    Article  Google Scholar 

  • Qin C-Z, Bao L-L, Zhu A-X, Wang R-X, Hu X-M (2013) Uncertainty due to DEM error in landslide susceptibility mapping. Int J Geogr Inf Sci 27:1364–1380

    Article  Google Scholar 

  • Refsgaard JC, Van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modeling process—a framework and guidance. Environ Modell Softw 22(11):1543–1556

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Rossi PH, Guzzetti F, Reichenbach P, Mondini AC, Perruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114(3):129–142

    Google Scholar 

  • Segoni S, Pappafico G, Luti T, Catani F (2020) Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides. Online. https://doi.org/10.1007/s10346-019-01340-2

  • Steger S, Brenning A, Bell R, Glade T (2017) The influence of systematically incomplete shallow landslide inventories on statistical susceptibility model and suggestions for improvement. Landslides. 14:1767–1781

    Article  Google Scholar 

  • Teerarungsigul S, Torizin J, Fuchs M et al (2015) An integrative approach for regional landslide susceptibility assessment using weight of evidence method: a case study of Yom River Basin, Phrae Province, Northern Thailand. Landslides. 13(5):1151–1165

    Article  Google Scholar 

  • Tian T, Balzer D, Wang L, Torizin J, Wan L, Li X, Chen L, Li A, Kuhn D, Fuchs M, Lege T, Tong B (2017) Landslide hazard and risk assessment Lanzhou, province gansu, China - Project introduction and outlook. In: Mikoš M, Tiwari B, Yin Y, Sassa K. (eds) Advancing culture of living with landslides, pp. 1027–1033. WLF 2017. Springer, Cham

    Google Scholar 

  • Torizin J (2016) Elimination of informational redundancy in the weight of evidence method: an application to landslide susceptibility assessment. Stoch Env Res Risk A. 30(2):635–651

    Article  Google Scholar 

  • Torizin J, Fuchs M, Awan AA et al (2017) Statistical landslide susceptibility assessment of the Mansehra and Thorgar districts, Khyber Pakhtunkhwa Province, Pakistan. Nat Hazards 89(2):757–784

    Article  Google Scholar 

  • Torizin J, Wang L, Fuchs M, Tong B, Balzer D, Wan L, Kuhn D, Li A, Chen L (2018) Statistical landslide susceptibility assessment in a dynamic environment: a case study for Lanzhou City, Gansu Province, NW China. J Mt Sci 15(6):1299–1318

    Google Scholar 

  • Vakhshoori V, Zare M (2018) Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat Nat Haz Risk. 9(1):249–266

    Article  Google Scholar 

  • Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazard Earth Sys 2:73–82

    Article  Google Scholar 

  • Zheng RQ, Meng XM, Wasowski J, Dijkstra T, Bovenga F, Xue YT, Wang SY (2014) Ground stability detection using PS-InSAR in Lanzhou, China. Q J Eng Geol Hydroge 47:307–321

    Article  Google Scholar 

Download references

Acknowledgements

We conducted this work in the framework of a scientific-technical cooperation project between the Federal Institute for Geosciences and Natural Resources (BGR) and the China Geological Survey (CGS) co-funded by the German Ministry of the Economic Affairs and Energy (BMWi) and Ministry of Natural Resources of the People’s Republik of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jewgenij Torizin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torizin, J., Fuchs, M., Kuhn, D., Balzer, D., Wang, L. (2021). Practical Accounting for Uncertainties in Data-Driven Landslide Susceptibility Models. Examples from the Lanzhou Case Study. In: Guzzetti, F., Mihalić Arbanas, S., Reichenbach, P., Sassa, K., Bobrowsky, P.T., Takara, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60227-7_27

Download citation

Publish with us

Policies and ethics