Skip to main content

Biological Functions of Plasmalogens

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1299)

Abstract

Plasmalogens (Pls) are one kind of phospholipids enriched in the brain and other organs. These lipids were thought to be involved in the membrane bilayer formation and anti-oxidant function. However, extensive studies revealed that Pls exhibit various beneficial biological activities including prevention of neuroinflammation, improvement of cognitive function, and inhibition of neuronal cell death. The biological activities of Pls were associated with the changes in cellular signaling and gene expression. Membrane-bound GPCRs were identified as possible receptors of Pls, suggesting that Pls might function as ligands or hormones. Aging, stress, and inflammatory stimuli reduced the Pls contents in cells, and addition of Pls inhibited inflammatory processes, which could suggest that reduction of Pls might be one of the risk factors for the diseases associated with inflammation. Oral ingestion of Pls showed promising health benefits among Alzheimer’s disease (AD) patients, suggesting that Pls might have therapeutic potential in other neurodegenerative diseases.

Keywords

  • Plasmalogens
  • Neuroinflammation
  • Neurodegenerative diseases
  • Aging
  • Signaling mechanism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-60204-8_13
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-60204-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11
Fig. 13.12

References

  1. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    CrossRef  CAS  PubMed  Google Scholar 

  2. Paltauf F (1994) Ether lipids in biomembranes. Chem Phys Lipids 74:101–139

    CrossRef  CAS  PubMed  Google Scholar 

  3. Wang ZJ, Liang CL, Li GM, Yu CY, Yin M (2006) Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices. Chem Biol Interact 163:207–217

    CrossRef  CAS  PubMed  Google Scholar 

  4. Mawatari S, Okuma Y, Fujino T (2007) Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. Anal Biochem 370:54–59

    CrossRef  CAS  PubMed  Google Scholar 

  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CrossRef  CAS  PubMed  Google Scholar 

  6. Mawatari S, Yunoki K, Sugiyama M, Fujino T (2009) Simultaneous preparation of purified plasmalogens and sphingomyelin in human erythrocytes with phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 73:2621–2625

    CrossRef  CAS  PubMed  Google Scholar 

  7. Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T (2013) Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Akpan N, Serrano-Saiz E, Zacharia BE, Otten ML, Ducruet AF, Snipas SJ, Liu W, Velloza J, Cohen G, Sosunov SA, Frey WH, Salvesen GS, Connolly ES Jr, Troy CM (2011) Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci 31:8894–8904

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradburn S, Murgatroyd C, Ray N (2019) Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res Rev 50:1–8

    CrossRef  CAS  PubMed  Google Scholar 

  10. Hossain MS, Abe Y, Ali F, Youssef M, Honsho M, Fujiki Y, Katafuchi T (2017) Reduction of ether-type Glycerophospholipids, Plasmalogens, by NF-kappaB signal leading to microglial activation. J Neurosci 37:4074–4092

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su XQ, Wang J, Sinclair AJ (2019) Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis 18:100

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    CrossRef  CAS  PubMed  Google Scholar 

  13. Biermann J, Just WW, Wanders RJ, Van Den Bosch H (1999) Alkyl-dihydroxyacetone phosphate synthase and dihydroxyacetone phosphate acyltransferase form a protein complex in peroxisomes. Eur J Biochem 261:492–499

    CrossRef  CAS  PubMed  Google Scholar 

  14. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    CAS  PubMed  Google Scholar 

  15. Katsumoto A, Takeuchi H, Takahashi K, Tanaka F (2018) Microglia in Alzheimer’s disease: risk factors and inflammation. Front Neurol 9:978

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M (2016) Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS One 11:e0161548

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE (2004) Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes 53:2079–2086

    CrossRef  CAS  PubMed  Google Scholar 

  18. Noguchi M, Honsho M, Abe Y, Toyama R, Niwa H, Sato Y, Ghaedi K, Rahmanifar A, Shafeghati Y, Fujiki Y (2014) Mild reduction of plasmalogens causes rhizomelic chondrodysplasia punctata: functional characterization of a novel mutation. J Hum Genet 59:387–392

    CrossRef  CAS  PubMed  Google Scholar 

  19. Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    CrossRef  CAS  PubMed  Google Scholar 

  20. Fabelo N, Martin V, Santpere G, Marin R, Torrent L, Ferrer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy EJ, Schapiro MB, Rapoport SI, Shetty HU (2000) Phospholipid composition and levels are altered in Down syndrome brain. Brain Res 867:9–18

    CrossRef  CAS  PubMed  Google Scholar 

  22. Wood PL, Unfried G, Whitehead W, Phillipps A, Wood JA (2015) Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. Schizophr Res 161:506–510

    CrossRef  PubMed  Google Scholar 

  23. Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, Yao JK, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA (2012) Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 198:347–352

    CrossRef  CAS  PubMed  Google Scholar 

  24. Wiest MM, German JB, Harvey DJ, Watkins SM, Hertz-Picciotto I (2009) Plasma fatty acid profiles in autism: a case-control study. Prostaglandins Leukot Essent Fatty Acids 80:221–227

    CrossRef  CAS  PubMed  Google Scholar 

  25. Yanagihara T, Cumings JN (1969) Alterations of phospholipids, particularly plasmalogens, in the demyelination of multiple sclerosis as compared with that of cerebral oedema. Brain 92:59–70

    CrossRef  CAS  PubMed  Google Scholar 

  26. Senanayake VK, Jin W, Mochizuki A, Chitou B, Goodenowe DB (2015) Metabolic dysfunctions in multiple sclerosis: implications as to causation, early detection, and treatment, a case control study. BMC Neurol 15:154

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lukacova N, Halat G, Chavko M, Marsala J (1996) Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem Res 21:869–873

    CrossRef  CAS  PubMed  Google Scholar 

  28. Viani P, Zini I, Cervato G, Biagini G, Agnati LF, Cestaro B (1995) Effect of endothelin-1 induced ischemia on peroxidative damage and membrane properties in rat striatum synaptosomes. Neurochem Res 20:689–695

    CrossRef  CAS  PubMed  Google Scholar 

  29. Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J, Goodenowe DB (2010) Circulating plasmalogen levels and Alzheimer disease assessment scale-cognitive scores in Alzheimer patients. J Psychiatry Neurosci 35:59–62

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Mawatari S, Ohara S, Taniwaki Y, Tsuboi Y, Maruyama T, Fujino T (2020) Improvement of blood Plasmalogens and clinical symptoms in Parkinson’s disease by Oral Administration of Ether Phospholipids: a preliminary report. Parkinsons Dis 2020:2671070

    PubMed  PubMed Central  Google Scholar 

  31. Komaroff AL (2017) Inflammation correlates with symptoms in chronic fatigue syndrome. Proc Natl Acad Sci U S A 114:8914–8916

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashioka S, Inoue K, Hayashida M, Wake R, Oh-Nishi A, Miyaoka T (2018) Implications of systemic inflammation and periodontitis for major depression. Front Neurosci 12:483

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229

    CrossRef  CAS  PubMed  Google Scholar 

  34. Fujino T, Yamada T, Asada T, Tsuboi Y, Wakana C, Mawatari S, Kono S (2017) Efficacy and blood Plasmalogen changes by Oral Administration of Plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine 17:199–205

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Itzkovitz B, Jiralerspong S, Nimmo G, Loscalzo M, Horovitz DD, Snowden A, Moser A, Steinberg S, Braverman N (2012) Functional characterization of novel mutations in GNPAT and AGPS, causing rhizomelic chondrodysplasia punctata (RCDP) types 2 and 3. Hum Mutat 33:189–197

    CrossRef  CAS  PubMed  Google Scholar 

  36. Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B, Ekici AB, Sticht H, Schwarze B, Lamont RE, Parboosingh JS, Bernier FP, Abou Jamra R (2014) A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency. Am J Hum Genet 95:602–610

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang HC, Farooqui AA, Horrocks LA (1996) Plasmalogen-selective phospholipase A2 and its role in signal transduction. J Lipid Mediat Cell Signal 14:9–13

    CrossRef  CAS  PubMed  Google Scholar 

  38. Sanchez-Mejia RO, Mucke L (2010) Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochim Biophys Acta 1801:784–790

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrer I, Blanco R (2000) N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res Mol Brain Res 77:270–276

    CrossRef  CAS  PubMed  Google Scholar 

  40. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, Hubbard GB, Ikeno Y, Zhang Y, Feng B, Li X, Serre T, Qi W, Van Remmen H, Miller RA, Bath KG, de Cabo R, Xu H, Neretti N, Sedivy JM (2015) Reduced expression of MYC increases longevity and enhances healthspan. Cell 160:477–488

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T (2012) Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 9:197

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hossain MS, Tajima A, Kotoura S, Katafuchi T (2018) Oral ingestion of plasmalogens can attenuate the LPS-induced memory loss and microglial activation. Biochem Biophys Res Commun 496:1033–1039

    CrossRef  CAS  PubMed  Google Scholar 

  43. Ali F, Hossain MS, Sejimo S, Akashi K (2019) Plasmalogens inhibit endocytosis of toll-like receptor 4 to attenuate the inflammatory signal in microglial cells. Mol Neurobiol 56:3404–3419

    CrossRef  CAS  PubMed  Google Scholar 

  44. Youssef M, Ibrahim A, Akashi K, Hossain MS (2019) PUFA-Plasmalogens attenuate the LPS-induced nitric oxide production by inhibiting the NF-kB, p38 MAPK and JNK pathways in microglial cells. Neuroscience 397:18–30

    CrossRef  CAS  PubMed  Google Scholar 

  45. Gray Z, Shi G, Wang X, Hu Y (2018) Macrophage inducible nitric oxide synthase promotes the initiation of lung squamous cell carcinoma by maintaining circulated inflammation. Cell Death Dis 9:642

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hossain MS, Mineno K, Katafuchi T (2016) Neuronal orphan G-protein coupled receptor proteins mediate Plasmalogens-induced activation of ERK and Akt signaling. PLoS One 11:e0150846

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shamim Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.S., Mawatari, S., Fujino, T. (2020). Biological Functions of Plasmalogens. In: Lizard, G. (eds) Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases. Advances in Experimental Medicine and Biology, vol 1299. Springer, Cham. https://doi.org/10.1007/978-3-030-60204-8_13

Download citation