Skip to main content

A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders

  • Chapter
  • First Online:
Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1299))

Abstract

Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abcd1:

ATP-binding cassette family D1

ADAPS:

alkyl-dihydroxyacetone phosphate synthase

BA:

bile acid

BDNF:

brain-derived neurotrophic factor

BM:

brain mutant

Cnp:

2′,3′-cyclic nucleotide phosphodiesterase

CNS:

central nervous system

DHAPAT:

dihydroxyacetone phosphate acyltransferase

DKO:

double knockout

EGL:

external granule layer

GSK3β:

glycogen synthase kinase 3 β

IRD:

infantile Refsum disease

IZ:

intermediate zone

KO:

knockout

MBP:

myelin basic protein

MEF:

mouse embryonic fibroblast

ML:

molecular layer

NALD:

neonatal adrenoleukodystrophy

PBD:

peroxisome biogenesis disorder

PNS:

peripheral nervous systems

PTS:

peroxisomal targeting signal

RCDP:

rhizomelic chondrodysplasia punctata

RING:

really interesting new gene

TrkB:

tropomyosin-related kinase B

vGlut2:

vesicular glutamate transporter 2

VLCFA:

very-long-chain fatty acid

VZ:

ventricular zone

X-ALD:

X-linked adrenoleukodystrophy

ZS:

Zellweger syndrome

ZSD:

Zellweger spectrum disorder

References

  1. Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    CAS  PubMed  Google Scholar 

  2. Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4:165–211

    Article  CAS  PubMed  Google Scholar 

  3. Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta Mol Cell Res 1763:1733–1748

    Google Scholar 

  4. Braverman N, Steel G, Obie C, Moser A, Moser H, Gould SJ et al (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 15:369–376

    Article  CAS  PubMed  Google Scholar 

  5. Motley AM, Hettema EH, Hogenhout EM, Brites P, ten Asbroek ALMA, Wijburg FA et al (1997) Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 15:377–380

    Article  CAS  PubMed  Google Scholar 

  6. Purdue PE, Zhang JW, Skoneczny M, Lazarow PB (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15:381–384

    Article  CAS  PubMed  Google Scholar 

  7. Barøy T, Koster J, Strømme P, Ebberink MS, Misceo D, Ferdinandusse S et al (2015) A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform. Hum Mol Genet 24:5845–5854

    Article  CAS  PubMed  Google Scholar 

  8. Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta Mol Basis Dis 1822:1430–1441

    Article  CAS  Google Scholar 

  9. Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S (2014) Peroxisome biogenesis in mammalian cells. Front Physiol 5:article 307

    Article  PubMed  Google Scholar 

  10. Fujiki Y (2016) Peroxisome biogenesis and human peroxisome-deficiency disorders. Proc Jpn Acad Ser B 92:463–477

    Article  CAS  Google Scholar 

  11. Volpe JJ, Adams RD (1972) Cerebro-hepato-renal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropathol 20:175–198

    Article  CAS  PubMed  Google Scholar 

  12. de León GA, Grover WD, Huff DS, Morinigo-Mestre G, Punnett HH, Kistenmacher ML (1977) Globoid cells, glial nodules, and peculiar fibrillary changes in the cerebro-hepato-renal syndrome of Zellweger. Ann Neurol 2:473–484

    Article  PubMed  Google Scholar 

  13. Evrard P, Caviness VSJ, Prats-Vinas J, Lyon G (1978) The mechanism of arrest of neuronal migration in the Zellweger malformation: an hypothesis bases upon cytoarchitectonic analysis. Acta Neuropathol 41:109–117

    Article  CAS  PubMed  Google Scholar 

  14. Gould SJ, Keller G-A, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108:1657–1664

    Article  CAS  PubMed  Google Scholar 

  15. Miyazawa S, Osumi T, Hashimoto T, Ohno K, Miura S, Fujiki Y (1989) Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol Cell Biol 9:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T et al (1992) Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J Biol Chem 267:14405–14411

    Article  CAS  PubMed  Google Scholar 

  17. Osumi T, Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y et al (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun 181:947–954

    Article  CAS  PubMed  Google Scholar 

  18. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10:3255–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y, Hijikata M et al (1994) Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. J Biol Chem 269:6001–6010

    Article  CAS  PubMed  Google Scholar 

  20. Fransen M, Brees C, Baumgart E, Vanhooren JC, Baes M, Mannaerts GP et al (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem 270:7731–7736

    Article  CAS  PubMed  Google Scholar 

  21. Terlecky SR, Nuttley WM, McCollum D, Sock E, Subramani S (1995) The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisome targeting signal. EMBO J 14:3627–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Klei IJ, Hilbrands RE, Swaving GJ, Waterham HR, Vrieling EG, Titorenko VI et al (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J Biol Chem 270:17229–17236

    Article  PubMed  Google Scholar 

  23. Marzioch M, Erdmann R, Veenhuis M, Kunau W-H (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacy-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 13:4908–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukai S, Ghaedi K, Fujiki Y (2002) Intracellular localization, function, and dysfunction of the peroxisome-targeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 277:9548–9561

    Article  CAS  PubMed  Google Scholar 

  25. Zhang JW, Lazarow PB (1995) PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD receptor family and is essential for the import of thiolase into peroxisomes. J Cell Biol 129:65–80

    Article  CAS  PubMed  Google Scholar 

  26. Albertini M, Rehling P, Erdmann R, Girzalsky W, Kiel JAKW, Veenhuis M et al (1997) Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92

    Article  CAS  PubMed  Google Scholar 

  27. Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A et al (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu N, Itoh R, Hirono Y, Otera H, Ghaedi K, Tateishi K et al (1999) The peroxin Pex14p: cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J Biol Chem 274:12593–12604

    Article  CAS  PubMed  Google Scholar 

  29. Bottger G, Barnett P, Klein ATJ, Kragt A, Tabak HF, Distel B (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 11:3963–3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J Cell Biol 135:85–95

    Article  CAS  PubMed  Google Scholar 

  31. Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350:77–81

    Article  CAS  PubMed  Google Scholar 

  32. Chang C-C, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 147:761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okumoto K, Abe I, Fujiki Y (2000) Molecular anatomy of the peroxin Pex12p: RING finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a RING peroxin, Pex10p. J Biol Chem 275:25700–25710

    Article  CAS  PubMed  Google Scholar 

  34. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25:10822–10832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto N, Tamura S, Fujiki Y (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5:454–460

    Article  CAS  PubMed  Google Scholar 

  36. Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M (2006) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta Mol Cell Res 1763:1639–1646

    Google Scholar 

  37. Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23:421–426

    Article  CAS  PubMed  Google Scholar 

  39. Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Google Scholar 

  40. Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M et al (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  CAS  PubMed  Google Scholar 

  41. Janssen A, Gressens P, Grabenbauer M, Baumgart E, Schad A, Vanhorebeek I et al (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23:9732–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faust PL, Su HM, Moser A, Moser HW (2001) The peroxisome deficient PEX2 Zellweger mouse: pathogenic and biochemical correlates of lipid dysfunction. J Mol Neurosci 16:289–297

    Article  CAS  PubMed  Google Scholar 

  44. Faust PL (2003) Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol 461:394–413

    Article  CAS  PubMed  Google Scholar 

  45. Faust PL, Banka D, Siriratsivawong R, Ng VG, Wikander TM (2005) Peroxisome biogenesis disorders: the role of peroxisomes and metabolic dysfunction in developing brain. J Inherit Metab Dis 28:369–383

    Article  CAS  PubMed  Google Scholar 

  46. Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C et al (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanson MG, Fregoso VL, Vrana JD, Tucker CL, Niswander LA (2014) Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 395:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K et al (2018) Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 1:e201800062

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brites P, Motley AM, Gressens P, Mooyer PAW, Ploegaert I, Everts V et al (2003) Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12:2255–2267

    Article  CAS  PubMed  Google Scholar 

  50. da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A et al (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124:2560–2570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brites P, Mooyer PAW, el Mrabet L, Waterham HR, Wanders RJA (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132:482–492

    Article  PubMed  Google Scholar 

  52. Li X, Baumgart E, Dong G-X, Morrell JC, Jimenez-Sanchez G, Valle D et al (2002) PEX11α is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weng H, Ji X, Naito Y, Endo K, Ma X, Takahashi R et al (2013) Pex11α deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 304:E187–E196

    Google Scholar 

  54. Chen C, Wang H, Chen B, Chen D, Lu C, Li H et al (2019) Pex11a deficiency causes dyslipidaemia and obesity in mice. J Cell Mol Med 23:2020–2031

    Article  CAS  PubMed  Google Scholar 

  55. Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002) PEX11β deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahlemeyer B, Gottwald M, Baumgart-Vogt E (2012) Deletion of a single allele of the Pex11β gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Dis Model Mech 5:125–140

    Article  CAS  PubMed  Google Scholar 

  57. Hiebler S, Masuda T, Hacia JG, Moser AB, Faust PL, Liu A et al (2014) The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 111:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berendse K, Boek M, Gijbels M, Van der Wel NN, Klouwer FC, van den Bergh-Weerman MA et al (2019) Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochim Biophys Acta Mol Basis Dis 1865:2774–2787

    Google Scholar 

  59. Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K (2006) Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. Biochim Biophys Acta Mol Cell Res 1763:1374–1381

    Google Scholar 

  60. Otera H, Fujiki Y (2012) Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 13:1364–1377

    Article  CAS  PubMed  Google Scholar 

  61. Kasarskis A, Manova K, Anderson KV (1998) A phenotype-based screen for embryonic lethal mutations in the mouse. Proc Natl Acad Sci USA 95:7485–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shimozawa N, Tsukamoto T, Nagase T, Takemoto Y, Koyama N, Suzuki Y et al (2004) Identification of a new complementation group of the peroxisome biogenesis disorders and PEX14 as the mutated gene. Hum Mutat 23:552–558

    Article  CAS  PubMed  Google Scholar 

  63. Ohtaka-Maruyama C, Okado H (2015) Molecular pathways underlying projection neuron production and migration during cerebral cortical development. Front Neurosci 9:447

    Article  PubMed  PubMed Central  Google Scholar 

  64. Berger J, Dorninger F, Forss-Petter S, Kunze M (2016) Peroxisomes in brain development and function. Biochem Biophys Acta 1863:934–955

    Article  CAS  PubMed  Google Scholar 

  65. Powers JM, Moser HW (1998) Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 8:101–120

    Article  CAS  PubMed  Google Scholar 

  66. Crane DI (2014) Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 69:1–8

    Article  CAS  PubMed  Google Scholar 

  67. Sotelo C, Dusart I (2009) Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience 162:589–600

    Article  CAS  PubMed  Google Scholar 

  68. Fremeau RTJ, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  69. Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K et al (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor δ2. J Neurosci 22:8487–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sugihara I (2005) Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4–7. J Comp Neurol 487:93–106

    Article  PubMed  Google Scholar 

  71. Watanabe M, Kano M (2011) Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci 34:1697–1710

    Article  PubMed  Google Scholar 

  72. Powers JM, Moser HW, Moser AB, Upshur JK, Bradford BF, Pai SG et al (1985) Fetal cerebrohepatorenal (Zellweger) syndrome: dysmorphic, radiologic, biochemical, and pathologic findings in four affected fetuses. Hum Pathol 16:610–620

    Article  CAS  PubMed  Google Scholar 

  73. Honsho M, Dorninger F, Abe Y, Setoyama D, Ohgi R, Uchiumi T et al (2019) Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. J Biochem 166:353–361

    Article  CAS  Google Scholar 

  74. Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP et al (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28:4015–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bottelbergs A, Verheijden S, Van Veldhoven PP, Just W, Devos R, Baes M (2012) Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. J Neuroinflammation 9:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  77. Keane MH, Overmars H, Wikander TM, Ferdinandusse S, Duran M, Wanders RJA et al (2007) Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 45:982–997

    Article  CAS  PubMed  Google Scholar 

  78. Heymans HS, Oorthuys JW, Nelck G, Wanders RJ, Schutgens RB (1985) Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N Engl J Med 313:187–188

    CAS  PubMed  Google Scholar 

  79. Agamanolis DP, Novak RW (1995) Rhizomelic chondrodysplasia punctata: report of a case with review of the literature and correlation with other peroxisomal disorders. Pediatr Pathol Lab Med 15:503–513

    Article  CAS  PubMed  Google Scholar 

  80. Ferdinandusse S, Ebberink MS, Vaz FM, Waterham HR, Wanders RJA (2016) The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders. J Inherit Metab Dis 39:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Waterham HR, Ferdinandusse S, Wanders RJA (2016) Human disorders of peroxisome metabolism and biogenesis. Biochem Biophys Acta 1863:922–933

    Article  CAS  PubMed  Google Scholar 

  82. Honsho M, Fujiki Y (2017) Plasmalogen homeostasis: regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 591:2720–2729

    Article  CAS  PubMed  Google Scholar 

  83. Wanders RJA, Schumacher H, Heikoop J, Schutgens RBH, Tager JM (1992) Human dihydroxyacetonephosphate acyltransferase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 15:389–391

    Article  CAS  PubMed  Google Scholar 

  84. Wanders RJA, Dekker C, Hovarth VA, Schutgens RB, Tager JM, van Laer P et al (1994) Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 17:315–318

    Article  CAS  PubMed  Google Scholar 

  85. Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B et al (2014) A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency. Am J Hum Genet 95:602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Vet ECJM, van den Bosch H (2000) Alkyl-dihydroxyacetonephosphate synthase. Cell Biochem Biophys 32:117–121

    Article  PubMed  Google Scholar 

  87. Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, Gould SJ (1997) Identification of PAHX, a Refsum disease gene. Nat Genet 17:185–189

    Article  CAS  PubMed  Google Scholar 

  88. Jansen GA, Ofman R, Ferdinandusse S, Ijlst L, Muijsers AO, Skjeldal OH et al (1997) Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet 17:190–193

    Article  CAS  PubMed  Google Scholar 

  89. Wanders RJA, Smit W, Heymans HSA, Schutgens RBH, Barth PG, Schierbeek H et al (1987) Age-related accumulation of phytanic acid in plasma from patients with the cerebro-hepato-renal (Zellweger) syndrome. Clin Chim Acta 166:45–56

    Article  CAS  PubMed  Google Scholar 

  90. Hoefler G, Hoefler S, Watkins PA, Chen WW, Moser A, Baldwin V et al (1988) Biochemical abnormalities in rhizomelic chondrodysplasia punctata. J Pediatr 112:726–733

    Article  CAS  PubMed  Google Scholar 

  91. Purdue PE, Skoneczny M, Yang X, Zhang JW, Lazarow PB (1999) Rhizomelic chondrodysplasia punctata, a peroxisomal biogenesis disorder caused by defects in Pex7p, a peroxisomal protein import receptor: a minireview. Neurochem Res 24:581–586

    Article  CAS  PubMed  Google Scholar 

  92. Wanders RJA, Denis S, Wouters F, Wirtz KWA, Seedorf U (1997) Sterol carrier protein X (SCPx) is a peroxisomal branched-chain b-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun 236:565–569

    Article  CAS  PubMed  Google Scholar 

  93. Moser HW, Moser AE, Singh I, O'Neill P (1984) Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis, and therapy. Ann Neurol 16:628–641

    Article  CAS  PubMed  Google Scholar 

  94. Berger J, Gärtner J (2006) X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim Biophys Acta 1763:1721–1732

    Google Scholar 

  95. Powers JM, DeCiero DP, Ito M, Moser AB, Moser HW (2000) Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 59:89–102

    Article  CAS  PubMed  Google Scholar 

  96. Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120:1485–1508

    Article  PubMed  Google Scholar 

  97. Forss-Petter S, Werner H, Berger J, Lassmann H, Molzer B, Schwab MH et al (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50:829–843

    Article  CAS  PubMed  Google Scholar 

  98. Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232:631–636

    Article  CAS  PubMed  Google Scholar 

  99. Lu J-F, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW et al (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci USA 94:9366–9371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  PubMed  Google Scholar 

  101. Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    Article  CAS  PubMed  Google Scholar 

  102. Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    Article  CAS  PubMed  Google Scholar 

  103. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA et al (1998) Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    Article  CAS  PubMed  Google Scholar 

  104. Abe I, Okumoto K, Tamura S, Fujiki Y (1998) Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. FEBS Lett 431:468–472

    Article  CAS  PubMed  Google Scholar 

  105. Abe I, Fujiki Y (1998) cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p. Biochem Biophys Res Commun 252:529–533

    Article  CAS  PubMed  Google Scholar 

  106. Tanaka A, Okumoto K, Fujiki Y (2003) cDNA cloning and characterization of the third isoform of human peroxin Pex11p. Biochem Biophys Res Commun 300:819–823

    Article  CAS  PubMed  Google Scholar 

  107. Koch A, Schneider G, Lüers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    Article  CAS  PubMed  Google Scholar 

  108. Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y (2012) Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 125:589–602

    Article  CAS  PubMed  Google Scholar 

  109. Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y et al (2013) Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2:998–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yoshida Y, Niwa H, Honsho M, Itoyama A, Fujiki Y (2015) Pex11p mediates peroxisomal proliferation by promoting deformation of the lipid membrane. Biol Open 4:710–721

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ebberink MS, Koster J, Visser G, van Spronsen F, Stolte-Dijkstra I, Smit GPA et al (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J Med Genet 49:307–313

    Article  CAS  PubMed  Google Scholar 

  112. Taylor RL, Handley MT, Waller S, Campbell C, Urquhart J, Meynert AM et al (2017) Novel PEX11B mutations extend the peroxisome biogenesis disorder 14B phenotypic spectrum and underscore congenital cataract as an early feature. Invest Ophthalmol Vis Sci 58:594–603

    Article  CAS  PubMed  Google Scholar 

  113. Tian Y, Zhang L, Li Y, Gao J, Yu H, Guo Y et al (2020) Variant analysis of PEX11B gene from a family with peroxisome biogenesis disorder 14B by whole exome sequencing. Mol Genet Genomic Med 8:e1042

    Article  Google Scholar 

  114. Thoms S, Gärtner J (2012) First PEX11β patient extends spectrum of peroxisomal biogenesis disorder phenotypes. J Med Genet 49:314–316

    Article  CAS  PubMed  Google Scholar 

  115. Collins CS, Gould SJ (1999) Identification of a common PEX1 mutation in Zellweger syndrome. Hum Mutat 14:45–53

    Article  CAS  PubMed  Google Scholar 

  116. Steinberg S, Chen L, Wei L, Moser A, Moser H, Cutting G et al (2004) The PEX gene screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 83:252–263

    Article  CAS  PubMed  Google Scholar 

  117. Ebberink MS, Mooijer PAW, Gootjes J, Koster J, Wanders RJA, Waterham HR (2011) Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 32:59–69

    Article  CAS  PubMed  Google Scholar 

  118. Preuss N, Brosius U, Biermanns M, Muntau AC, Conzelmann E, Gartner J (2002) PEX1 mutations in complementation group 1 of Zellweger spectrum patients correlate with severity of disease. Pediatr Res 51:706–714

    Article  CAS  PubMed  Google Scholar 

  119. Walter C, Gootjes J, Mooijer PA, Portsteffen H, Klein C, Waterham HR et al (2001) Disorders of peroxisome biogenesis due to mutations in PEX1: phenotypes and PEX1 protein levels. Am J Hum Genet 69:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tamura S, Matsumoto N, Imamura A, Shimozawa N, Suzuki Y, Kondo N et al (2001) Phenotype-genotype relationships in peroxisome biogenesis disorders of PEX1-defective complementation group 1 are defined by Pex1p-Pex6p interaction. Biochem J 357:417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Majewski J, Wang Z, Lopez I, Al Humaid S, Ren H, Racine J et al (2011) A new ocular phenotype associated with an unexpected but known systemic disorder and mutation: novel use of genomic diagnostics and exome sequencing. J Med Genet 48:593–596

    Article  CAS  PubMed  Google Scholar 

  122. Zhang R, Chen L, Jiralerspong S, Snowden A, Steinberg S, Braverman N (2010) Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci USA 107:5569–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baes M, Dewerchin M, Janssen A, Collen D, Carmeliet P (2002) Generation of Pex5-loxP mice allowing the conditional elimination of peroxisomes. Genesis 32:177–178

    Article  CAS  PubMed  Google Scholar 

  124. Bjorkman J, Tonks I, Maxwell MA, Paterson C, Kay GF, Crane DI (2002) Conditional inactivation of the peroxisome biogenesis Pex13 gene by Cre-loxP excision. Genesis 32:179–180

    Article  CAS  PubMed  Google Scholar 

  125. Krysko O, Hulshagen L, Janssen A, Schütz G, Klein R, De Bruycker M et al (2007) Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 85:58–72

    Article  CAS  PubMed  Google Scholar 

  126. Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S et al (2011) PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4:104–119

    Article  CAS  PubMed  Google Scholar 

  127. Rahim RS, St John JA, Crane DI, Meedeniya ACB (2018) Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci 88:16–32

    Article  CAS  PubMed  Google Scholar 

  128. Rahim RS, Meedeniya AC, Crane DI (2014) Central serotonergic neuron deficiency in a mouse model of Zellweger syndrome. Neuroscience 274:229–241

    Article  CAS  PubMed  Google Scholar 

  129. Kassmann CM, Lappe-Siefke C, Baes M, Brügger B, Mildner A, Werner HB et al (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    Article  CAS  PubMed  Google Scholar 

  130. Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, Nave K-A et al (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 58:1532–1543

    Article  PubMed  Google Scholar 

  131. Kassmann CM, Quintes S, Rietdorf J, Mobius W, Sereda MW, Nientiedt T et al (2011) A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Lett 585:2205–2211

    Article  CAS  PubMed  Google Scholar 

  132. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  CAS  PubMed  Google Scholar 

  133. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  CAS  PubMed  Google Scholar 

  134. Kellendonk C, Opherk C, Anlag K, Schütz G, Tronche F (2000) Hepatocyte-specific expression of Cre recombinase. Genesis 26:151–153

    Article  CAS  PubMed  Google Scholar 

  135. Tronche F, Opherk C, Moriggl R, Kellendonk C, Reimann A, Schwake L et al (2004) Glucocorticoid receptor function in hepatocytes is essential to promote postnatal body growth. Genes Dev 18:492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dirkx R, Vanhorebeek I, Martens K, Schad A, Grabenbauer M, Fahimi D et al (2005) Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41:868–878

    Article  CAS  PubMed  Google Scholar 

  137. Gravel M, Di Polo A, Valera PB, Braun PE (1998) Four-kilobase sequence of the mouse CNP gene directs spatial and temporal expression of lacZ in transgenic mice. J Neurosci Res 53:393–404

    Article  CAS  PubMed  Google Scholar 

  138. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE et al (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    Article  CAS  PubMed  Google Scholar 

  139. Kleinecke S, Richert S, de Hoz L, Brugger B, Kungl T, Asadollahi E et al (2017) Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. elife 6:e23332

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Biol Cell 22:5100–5113

    Article  CAS  Google Scholar 

  141. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave K-A (2006) Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44:611–621

    Article  CAS  PubMed  Google Scholar 

  142. Kong J, Ji Y, Jeon YG, Han JS, Han KH, Lee JH et al (2020) Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nat Commun 11:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Park H, He A, Tan M, Johnson JM, Dean JM, Pietka TA et al (2019) Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J Clin Invest 129:694–711

    Article  PubMed  PubMed Central  Google Scholar 

  144. Martens K, Bottelbergs A, Peeters A, Jacobs F, Espeel M, Carmeliet P et al (2012) Peroxisome deficient aP2-Pex5 knockout mice display impaired white adipocyte and muscle function concomitant with reduced adrenergic tone. Mol Genet Metab 107:735–747

    Article  CAS  PubMed  Google Scholar 

  145. Brauns AK, Heine M, Todter K, Baumgart-Vogt E, Luers GH, Schumacher U (2019) A defect in the peroxisomal biogenesis in germ cells induces a spermatogenic arrest at the round spermatid stage in mice. Sci Rep 9:9553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Baboota RK, Shinde AB, Lemaire K, Fransen M, Vinckier S, Van Veldhoven PP et al (2019) Functional peroxisomes are required for β-cell integrity in mice. Mol Metab 22:71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Minichiello L, Klein R (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev 10:2849–2858

    Article  CAS  PubMed  Google Scholar 

  148. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  CAS  PubMed  Google Scholar 

  149. Carter AR, Chen C, Schwartz PM, Segal RA (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou P, Porcionatto M, Pilapil M, Chen Y, Choi Y, Tolias KF et al (2007) Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55:53–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aubourg P, Scotto J, Rocchiccioli F, Feldmann-Pautrat D, Robain O (1986) Neonatal adrenoleukodystrophy. J Neurol Neurosurg Psychiatry 49:77–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Torvik A, Torp S, Kase BF, Ek J, Skjeldal O, Stokke O (1988) Infantile Refsum’s disease: a generalized peroxisomal disorder. Case report with postmortem examination. J Neurol Sci 85:39–53

    Article  CAS  PubMed  Google Scholar 

  153. Chow CW, Poulos A, Fellenberg AJ, Christodoulou J, Danks DM (1992) Autopsy findings in two siblings with infantile Refsum disease. Acta Neuropathol 83:190–195

    Article  CAS  PubMed  Google Scholar 

  154. Alkan A, Kutlu R, Yakinci C, Sigirci A, Aslan M, Sarac K (2003) Delayed myelination in a rhizomelic chondrodysplasia punctata case: MR spectroscopy findings. Magn Reson Imaging 21:77–80

    Article  PubMed  Google Scholar 

  155. Bams-Mengerink AM, Majoie CB, Duran M, Wanders RJ, Van Hove J, Scheurer CD et al (2006) MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology 66:798–803

    Article  CAS  PubMed  Google Scholar 

  156. Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA et al (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12:1881–1895

    Article  CAS  PubMed  Google Scholar 

  157. Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet 18:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Honsho M, Abe Y, Fujiki Y (2015) Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis. J Biol Chem 290:28822–28833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Van Veldhoven PP, Baes M (2013) Peroxisome deficient invertebrate and vertebrate animal models. Front Physiol 4:335

    PubMed  PubMed Central  Google Scholar 

  160. Thieringer H, Moellers B, Dodt G, Kunau W-H, Driscoll M (2003) Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans. J Cell Sci 116:1797–1804

    Article  CAS  PubMed  Google Scholar 

  161. Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Zhou B, Yang L, Li S, Huang J, Chen H, Hou L et al (2012) Midlife gene expressions identify modulators of aging through dietary interventions. Proc Natl Acad Sci USA 109:E1201–E1209

    Google Scholar 

  163. Koizumi K, Higashida H, Yoo S, Islam MS, Ivanov AI, Guo V et al (2007) RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci USA 104:5626–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA (2011) A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 4:659–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Di Cara F, Rachubinski RA, Simmonds AJ (2019) Distinct roles for peroxisomal targeting signal receptors Pex5 and Pex7 in Drosophila. Genetics 211:141–149

    Article  CAS  PubMed  Google Scholar 

  166. Setchell KD, Bragetti P, Zimmer-Nechemias L, Daugherty C, Pelli MA, Vaccaro R et al (1992) Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology 15:198–207

    Article  CAS  PubMed  Google Scholar 

  167. Maeda K, Kimura A, Yamato Y, Nittono H, Takei H, Sato T et al (2002) Oral bile acid treatment in two Japanese patients with Zellweger syndrome. J Pediatr Gastroenterol Nutr 35:227–230

    Article  PubMed  Google Scholar 

  168. Demaret T, Varma S, Stephenne X, Smets F, Scheers I, Wanders R et al (2018) Living-donor liver transplantation for mild Zellweger spectrum disorder: up to 17 years follow-up. Pediatr Transplant 22:e13112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to the colleagues in this field for not citing all their work due to space limitations. This work was supported in part by the Grants-in-Aid for Scientific Research: JP17K15621 and JP19K07386 (to Y.A.), JP19K06567 (to S.T.), JP17K07337 (to M.H.), JP24247038, JP25112518, JP25116717, JP 26116007, JP15K14511, JP15K21743, and JP117H03675 (to Y.F.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and grants from the Takeda Science Foundation and the Naito Foundation to Y.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Fujiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abe, Y., Tamura, S., Honsho, M., Fujiki, Y. (2020). A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. In: Lizard, G. (eds) Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases. Advances in Experimental Medicine and Biology, vol 1299. Springer, Cham. https://doi.org/10.1007/978-3-030-60204-8_10

Download citation

Publish with us

Policies and ethics