Skip to main content

Molecular Evolution: A Brief Introduction

  • Chapter
  • First Online:
The Molecular Evolutionary Clock
  • 1522 Accesses

Abstract

Molecular evolution is an expansive and highly interdisciplinary field of research that investigates the evolution of biological molecules and molecular phenomena over time. A notable feature of the field is its ability to embrace and adapt to novel molecular methods, technology, and data while developing and applying a rigorous theoretical framework of population genetics to data interpretation. In the early days of molecular biology, as protein and DNA sequences began to accumulate, molecular evolutionary analyses contributed to the development of several fundamental concepts that remain impactful even after several decades. From preliminary comparisons of protein sequences from distantly related species emerged the idea of a constant molecular clock. In turn, this idea became one of the main inspirations for the neutral theory of molecular evolution, which provides the basis for widely used statistical approaches to test selection using molecular data, including genome sequences. The nearly neutral theory emphasizes that the evolutionary dynamics of many mutations are governed by genetic drift because their effects on fitness are borderline neutral, and this theory can explain many broad patterns of molecular evolution. As the field of molecular evolution embraces the so-called ‘omics’ era, these foundational ideas continue to provide guiding principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akashi H, Osada N, Ohta T (2012) Weak selection and protein evolution. Genetics 192:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MR (1998) Paradox and persuasion: negotiating the place of molecular evolution within evolutionary biology. J Hist Biol 31:85–111

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Blombäck B (1964) Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature 202:147–152

    Article  CAS  PubMed  Google Scholar 

  • Goodman M (1961) The role of immunologic differences in the phyletic development of human behavior. Hum Biol 33:131–162

    CAS  PubMed  Google Scholar 

  • Goodman M (1962) Evolution of the immunologic species specificity of human serum proteins. Hum Biol 34:104–150

    CAS  PubMed  Google Scholar 

  • Goodman M (1963) Man’s place in the phylogeny of the primates as reflected in serum proteins. In: Washburn SL (ed) Classification and human evolution. Aldine Press, Chicago, IL, pp 204–234

    Google Scholar 

  • Haldane JBS (1947) The mutation rate of the gene for hemophilia, and its segregation ratios in males and females. Ann Eugenics 13:262–272

    Article  CAS  Google Scholar 

  • Haldane JBS (1957) The cost of natural selection. J Genet 55:511–524

    Article  Google Scholar 

  • Hubby JL, Lewontin RC (1966) A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54:577–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Elango N, Warden CW, Vigoda E, Yi S (2006) Heterogeneous genomic molecular clocks in primates. PLOS Genet 2:e163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura M (1960) Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load. J Genet 57:21–34

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimura M, Ohta T (1971a) On the rate of molecular evolution. J Mol Evol 1:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ohta T (1971b) Protein polymorphism as a phase of molecular evolution. Nature 229:467–469

    Article  CAS  PubMed  Google Scholar 

  • King JL, Jukes T (1969) Non-Darwinian evolution. Science 164:788–798

    Article  CAS  PubMed  Google Scholar 

  • Kohne C (1970) Evolution of higher-organism DNA. Q Rev Biophys 3:327–375

    Article  CAS  PubMed  Google Scholar 

  • Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A (2008) Patterns of positive selection in six mammalian genomes. PLOS Genet 4:e1000144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions in evolution. Nature 224:149–154

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC, Hubby JL (1966) A molecular approach to the study of genetic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704–714

    Article  CAS  PubMed  Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50:672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies EH, Blanchette M, Comparative Sequencing Program NISC, Haussler D, Green ED (2003) Identification and characterization of multi-species conserved sequences. Genome Res 13:2507–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Moorjani P, Amorim CEG, Arndt PF, Przeworski M (2016) Variation in the molecular clock of primates. Proc Natl Acad Sci USA 113:10607–10612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31:155–178

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1954) The nature of the genetic effects produced by radiation. In: Hollaender A (ed) Radiation biology. McGraw-Hill, New York, pp 351–473

    Google Scholar 

  • Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22:2318–2342

    Article  CAS  PubMed  Google Scholar 

  • Nuttall GHF (1904) Blood immunity and blood relationship. Cambridge University Press, Cambridge

    Google Scholar 

  • Ohta T (1972a) Evolutionary rate of cistrons and DNA divergence. J Mol Evol 1:150–157

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1972b) Population size and rate of evolution. J Mol Evol 1:305–314

    Article  PubMed  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1974) Mutational pressure as the main cause of molecular evolution and polymorphism. Nature 252:351–354

    Article  CAS  Google Scholar 

  • Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (2002) Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 99:16134–16137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T (2011) Near-neutrality, robustness, and epigenetics. Genome Biol Evol 3:1034–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1:18–25

    Article  CAS  Google Scholar 

  • Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  CAS  Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA 109:18488–18492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata N (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JA, Welch JJ, Lanfear R, Bromham L (2010) A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Tsantes C, Steiper ME (2009) Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc Natl Acad Sci USA 106:18165–18170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandiver AR, Idrizi A, Rizzardi L, Feinberg AP, Hansen KD (2015) DNA methylation is stable during replication and cell cycle arrest. Sci Rep 5:17911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch JJ, Bininda-emonds ORP, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol 8:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson AC, Sarich VM (1969) A molecular time scale for human evolution. Proc Natl Acad Sci USA 63:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJK, Cooke JE, Elgar G (2004) Highly conserved non-coding sequences are associated with vertebrate development. PLOS Biol 3:e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi S (2012) Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. Genome Biol 13:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi S, Ellsworth DL, Li WH (2002) Slow molecular clocks in Old World monkeys, apes, and humans. Mol Biol Evol 19:2191–2198

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Google Scholar 

  • Zuckerkandl E, Jones RT, Pauling L (1960) A comparison of animal hemoglobin by tryptic peptide pattern analysis. Proc Natl Acad Sci USA 46:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, S.V. (2020). Molecular Evolution: A Brief Introduction. In: Ho, S.Y.W. (eds) The Molecular Evolutionary Clock. Springer, Cham. https://doi.org/10.1007/978-3-030-60181-2_2

Download citation

Publish with us

Policies and ethics