Abstract
Designers and system analysts have long struggled to extract and repurpose data from user research by laboriously presenting content in the form of storyboards, behavioral-type personas, or journey maps. An alternative is to convey insights from user research through scenario-based personas that represent user research data through storytelling. This provides a more streamlined way to convey data rather than character-based personas; however, scenarios are effortful for developers to articulate and envision. In this work, we empower assistive technology development teams to access authentic user experiences with scenario-based personas through tangible and digital artifacts. Scenario-based personas were used for conveying the results of a user analysis study for color identification mobile applications for people with visual impairments. We developed scenario-based personas for persons with impaired color vision based on the main contexts identified in user research studies. The method combines personas depicted in silhouettes of people with impaired color vision and scenario contexts that capture the place and activities. Silhouettes were used in the artifacts to reduce the bias that a face often generates in persona-based scenarios. Preliminary findings suggest that scenario-based persona tools were effective in describing the stories and context behind why a person with a visual disability would consider a color identification application. Through this method, scenario-based personas were able to foster understanding of the application’s target user population by showing their main contexts of using these mobile applications and create playful and tangible artifacts to capture and convey such user information to designers and developers in the Humanistic Co-Design community. Methodological considerations for using scenario-based personas in user research will be discussed.
Keywords
- Participatory design
- Mobile applications
- Co-design
- Co-creation
- Color identification
- Scenarios
- Visually impaired
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Saez, A.V., Domingo, M.G.G.: Scenario-based persona: introducing personas through their main contexts. In: Extended Abstracts on Human Factors in Computing Systems (CHI EA 2011), p. 505. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1979742.1979563
Moser, C., Fuchsberger, V., Neureiter, K., Sellner, W., Tscheligi, M.: Revisiting personas: the making-of for special user groups. In: CHI ’12 Extended Abstracts on Human Factors in Computing Systems (CHI EA 2012), pp. 453–468. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2212776.2212822
Chang, Y.N., Lim, Y.K., Stolterman, E.: Personas: from theory to practices. In: Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges (NordiCHI 2008), pp. 439–442. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1463160.1463214
Medeiros, A.J., Stearns, L., Findlater, L., Chen, C., Froehlich, J.E.: Recognizing clothing colors and visual textures using a finger-mounted camera: an initial investigation. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2017), pp. 393–394. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132525.3134805
Nguyen, R., Geddes, C.: Exploring haptic colour identification aids. In: The 21st International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2019), pp. 709–711. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308561.3356111
Flatla, D.R., Andrade, A.R., Teviotdale, R.D., Knowles, D.L., Steward, C.: ColourID: improving colour identification for people with impaired colour vision. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2015), pp. 3543–3552. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2702123.2702578
Li, W., Flatla, D.R.: 30 years later: has CVD research changed the world? In: The 21st International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2019), pp. 584–590. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308561.3354612
Popleteev, A., Louveton, N., McCall, R.: Colorizer: smart glasses aid for the colorblind. In: Proceedings of the 2015 workshop on Wearable Systems and Applications (WearSys 2015), pp. 7–8. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2753509.2753516
Seeing AI App from Microsoft. https://www.microsoft.com/en-us/ai/seeing-ai. Accessed 18 June 2020
Mattos, A.B., Cardonha, C., Gallo, D., Avegliano, P., Herrmann, R., Borger, S.: Marker-based image recognition of dynamic content for the visually impaired. In: Proceedings of the 11th Web for All Conference, pp. 1–4. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2596695.2596707
Prasanna, S., Priyadharshini, N., Pugazhendhi, M.A.: Textile robot for matching and pick up clothes based on color recognition. Asian J. Appl. Sci. Technol. (AJAST) 1(3), 62–65 (2017)
Miaskiewicz, T., Kozar, K.A.: Personas and user-centered design: how can personas benefit product design processes? Des. Stud. 32(5), 417–430 (2011). https://doi.org/10.1016/j.destud.2011.03.003
Kane, S.K., Jayant, C., Wobbrock, J.O., Ladner, R.E.: Freedom to roam: a study of mobile device adoption and accessibility for people with visual and motor disabilities. In: Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 115–122. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1639642.1639663
Law, C.M., Yi, J.S., Choi, Y.S., Jacko, J.A.: Are disability-access guidelines designed for designers? Do they need to be? In: Proceedings of the 18th Australia Conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments (OZCHI 2006), pp. 357–360. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1228175.1228244
Rainger, P.: Usability and accessibility of personal digital assistants as assistive technologies in education. Learning with mobile devices: research and development. Learning and Skills Development Agency, London, UK, pp. 131–137 (2004)
El-Glaly, Y.N., Peruma, A., Krutz, D.E., Hawker, J.S.: Apps for everyone: mobile accessibility learning modules. ACM Inroads 9(2), 30–33 (2018). https://doi.org/10.1145/3182184
About AEGIS. http://www.aegis-project.eu. Accessed 13 June 2020
Sulmon, N., Slegers, K., Van Isacker, K., Gemou, M., Bekiaris, E.: Using personas to capture assistive technology needs of people with disabilities (2010)
LeRouge, C., Ma, J., Sneha, S., Tolle, K.: User profiles and personas in the design and development of consumer health technologies. Int. J. Med. Informatics 82(11), 251–268 (2013). https://doi.org/10.1016/j.ijmedinf.2011.03.006
Brulé, E., Jouffrais, C.: Representing children living with visual impairments in the design process: a case study with personae. In: Langdon, P., Lazar, J., Heylighen, A., Dong, H. (eds.) Designing Around People, pp. 23–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29498-8_3
Kane, S., Hurst, A., Buehler, E., Carrington, P., Williams, M.: Collaboratively designing assistive technology. Interactions 21(2), 78–92 (2014)
ATHack. http://assistivetech.mit.edu/events. Accessed 14 June 2020
Boston Grand Hack 2019. https://grandhack.mit.edu/boston-2019. Accessed 14 June 2020
#include <girl>’s Assistive Technology Hackathon. https://code.likeagirl.io/include-s-assistive-technology-hackathon-1ff7d1caf83a. Accessed 14 June 2020
Gubin, T.A., et al.: A systems approach to healthcare innovation using the MIT hacking medicine model. Cell Syst. 5(1), 6–10 (2017). https://doi.org/10.1016/j.cels.2017.02.012
Watkins, S.M., Dunne, L.E.: Functional Clothing Design: From Sportswear to Spacesuits, 1st edn, pp. 2–29. Fairchild Books, New York (2015)
Cook, A.M., Polgar, J.M.: Cook & Hussey’s Assistive Technologies: Principles and Practice, 3rd edn, pp. 34–53. Mosby Elsevier, Maryland Heights (2008)
Burgstahler, S., Doe, T.: Disability-related simulations: if, when, and how to use them. Rev. Disabil. Stud. 1(2), 4–17 (2004)
Acknowledgment
We thank the Humanistic Co-Design Initiative and the Human-Computer Interaction (HCI) Lab for supporting this work. We also thank the Saudi Authority for Intellectual Property (SAIP) and the Saudi Health Council’s National Lab for Emerging Health Technologies for hosting and mentoring. This work is part of the authors’ project that is carried out under the CoCreate Fellowship for Humanistic Co-Design of Access Technologies. We would also like to thank the participants in the user study, as well as Dr. Areej Al-Wabil, Dr. Shiroq Al-Megren, Dr. Kyle Keane, and Anna Musser, for their mentorship and support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
AlSabban, M., Karim, A., Sun, V.H., Hashim, J., AlSayed, O. (2020). Co-design of Color Identification Applications Using Scenario-Based Personas for People with Impaired Color Vision. In: Stephanidis, C., Antona, M., Gao, Q., Zhou, J. (eds) HCI International 2020 – Late Breaking Papers: Universal Access and Inclusive Design. HCII 2020. Lecture Notes in Computer Science(), vol 12426. Springer, Cham. https://doi.org/10.1007/978-3-030-60149-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-60149-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60148-5
Online ISBN: 978-3-030-60149-2
eBook Packages: Computer ScienceComputer Science (R0)