Abstract
Integrated optical sensors are and have been investigated since a long period of time and have found their way into many applications. Ring resonator can be used as sensing elements for example by measuring the resonance frequency shift, which is induced by a change in the effective refractive index. Integrated waveguide-based sensors have gained attention since the downturn of the telecommunication industry left several research groups looking for other fields of application. But this is not the only cause. The focus of research has turned more and more towards biology where single molecule and single cell detection are the envisaged goal. This chapter provides an overview of sensors based on integrated ring resonators in microfluidics, optofluidics and special focus on biosensors. The following examples demonstrate the wide range of application of integrated ring resonators which has grown tremendously in the last 20 years.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adar, R., Shani, Y., Henry, C.H., Kistler, R.C., Blonder, G.E., Olsson, N.A.: Measurement of very low-loss silica on silicon waveguides with a ring resonator. Appl. Phys. Lett. 58, 444–445 (1991)
Bhola, B., Song, H.C., Tazawa, H., Steier, W.H.: Polymer microresonator strain sensors. IEEE Photonics Technol. Lett. 14, 867–869 (2005)
Blair, S., Chen, Y.: Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001)
Boyd, R.W., Heebner, J.E.: Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)
Campanella, C.F., De Leonardis, Passaro, V.: A high efficiency label-free photonic biosensor based on vertically stacked ring resonators. Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014)
Carriere, J.T.A., Frantz, J.A., Youmans, B.R., Honkanen, S., Kostuk, R.K.: Measurement of waveguide birefringence using a ring resonator. IEEE Photonics Technol. Lett. 16, 1134–1136 (2004)
Chao, C.Y., Guo, L.J.: Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)
Claes, T., Bogaerts, W., Bienstman, P.: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 18(22), 22747–22761 (2010)
Dai, D.: Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 17(26), 23817–23822 (2009)
De Leonardis, F., Campanella, C.E., Troia, B., Perri A.G., Passaro, V.M.: Performance of SOI Bragg grating ring resonator for nonlinear sensing applications. Sensors (Basel) 14(9), 16017–16034 (2014)
Fan, S.: Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002)
Geidel, S., Peransi Llopis, S., Rodrigo, M., De Diego-Castilla, G., Sousa, A., Nestler, J., Otto, T., Gessner, T., Parro, V.: Integration of an optical ring resonator biosensor into a self-contained microfluidic cartridge with active single-shot micropumps. Micromachines 7, 153 (2016)
Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013)
Han, X.Y., Wu, Z.L., Yang, C.L., et al.: Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers 10(6): 603–631 (2018)
Jaruwongrungsee, K., Waiwijit, U., Withayachumnankul, W., Maturos, T., Phokaratkul, D., Tuantranont, A., Wlodarski, W., Martucci, A., Wisitsoraat, A.: Microfluidic-based split-ring-resonator sensor for real-time and label-free biosensing. Procedia Eng. 120, 163–166 (2015)
Kim, G.D., Lee, H.S., Park, C.H., Lee, S.S., Lim, B.T., Bae, H.K., Lee, W.G.: Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 18(21), 22215–22221 (2010)
Kim, H.T., Yu, M.: Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 24, 9501–9510 (2016)
Kiyat, I., Kocabas, C., Aydinli, A.: Integrated micro ring resonator displacement sensor for scanning probe microscopies. J. Micromech. Microeng. 14, 374–381 (2004)
Kotz, F., Risch, P., Arnold, K., et al.: Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nat. Commun. 10, 1439 (2019)
Krioukov, E., Klunder, D.J.W., Driessen, A., Greve, J., Otto, C.: Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002)
Ksendzov, Homer, M.L., Manfreda, A.M.: Integrated optics ring-resonator chemical sensor with polymer transduction layer. Electron. Lett. 40, 63–65 (2004)
Kwon, M.S., Steier, W.H.: Microring-resonator-based sensor measuring both the concentration and temperature of a solution. Opt. Express 16(13), 9372–9377 (2008)
Li, Z.: Optofluidic resonators and sensors. In: Bhushan, B. (eds.) Encyclopedia of Nanotechnology. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-007-6178-0_101012-1
Lu, T.W., Lee, P.T.: Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518–1526 (2009)
Luan, E., Shoman, H., Ratner, D.M., Cheung, K.C., Chrostowski, L.: Silicon photonic biosensors using label-free detection. Sensors (Basel) 19(5), 3519 (2019)
Minzioni, R., Osellame, C., Sada, S.Z., et al.: Roadmap in optofluidics. J. Opt. 19, 093003 (2017)
Moldenhauer, L., Lipka, T., Venegas-Rojas, D., Igeta, T.H.K.: Optofluidic a-Si:H-based photonic lab-on-chip with dispersion engineered resonance spectra. IEEE Photonics Technol. Lett. 29(4), 412–415 (2017)
Nauriyal, J., Song, M., Yu, R., Cardenas, J.: Fiber-to-chip fusion splicing for low-loss photonic packaging. Optica 6(5), 549–552 (2019)
Puce, S., Rizzi, F., Spagnolo, B., Qualtieri, A., De Vittorio, M., Staufer, U.: 3D-microfabrication by two-photon polymerization of an integrated sacrificial stencil mask. Micro Nano Eng. 2, 70–75 (2019)
Ren, J., Wang, L.H., Han, X.Y., Cheng, J.F., Lv, H.L., Wang, J.Y., et al.: Organic silicone sol-gel polymer as non-covalent carrier of receptor proteins for label-free optical biosensor application. ACS Appl. Mater. Interfaces 5, 386–394 (2013)
Steglich, P., Hülsemann, M., Dietzel, B., Mai, A.: Optical biosensors based on silicon-on-insulator ring resonators: a review. Molecules 24(3), 519–525 (2019a)
Steglich, P., Mai, C., Mai, A.: Silicon-organic hybrid photonic devices in a photonic integrated circuit technology. ECS J. Solid State Sci. Technol. 8(11), 217–221 (2019b)
Steglich, P., Villringer, C., Dietzel, B., et al.: On-chip dispersion measurement of the quadratic electro-optic effect in nonlinear optical polymers using a photonic integrated circuit technology. IEEE Photonics J. 11(3), 1–10 (2019c)
Sun, Y., Fan, X.: Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399, 205–211 (2011)
Tasoglu, S., Folch, A.: 3D Printed Microfluidic Devices. Ed MDPI 0–211 (2019). ISBN 3038974676, 9783038974673
Wang, L.H., Ren, J., Han, X.Y., Claes, T., Jian, X.G., Bienstman, P., Baets, R., Zhao, M.S., Morthier, G.: A label-free optical biosensor built on a low cost polymer platform. IEEE Photonics J. 4, 920–930 (2012)
Wang, J., Sanchez, M.M., Yin, Y., Herzer, R., Ma, L., Schmidt, O.G.: Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Adv. Mater. Technol. 5(6), 1901138 (2020)
Wan, C., Gonzalez, J.L., Fan, T., Adibi, A., Gaylord, T.K., Bakir, M.S.: Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technol. Lett. 31(16), 1311–1314 (2019)
Weituschat, L.M., Dickmann, W., Guimbao, J., Ramos, D., Kroker, S., Postigo, P.A.: Photonic and thermal modelling of microrings in silicon, diamond and gan for temperature sensing. Nanomaterials 10(5), 934 (2020)
White, I.M., Fan, X.: On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)
Xu, H., Hafezi, M., Fan, J., Taylor, J.M., Strouse, G.F., Ahmed, Z.: Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 3098–3104 (2014)
Yalcın, A., Popat, K.C., Aldridge, J.C., Desai, T.A., Hryniewicz, J., Chbouki, N., Little, B.E., King, O., Van, V., Chu, S.T., Gill, D., Anthes-Washburn, M., Ünlü, M.S., Goldberg, B.B.: Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Topics Quantum Electron. 12, 148–155 (2006)
Ye, N.Y., Michel, J., Kimerling, L.C.: Athermal high-index-contrast waveguide design. IEEE Photonics Technol. Lett. 20(11), 885–887 (2008)
Zamora, V., Lützow, P., Weiland, M., Pergande, D.: Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm. Opt. Express 21(23), 27550–27557 (2013)
Steglich, P., Mai, C., Villringer, C., Mai, A.: Direct observation and simultaneous use of linear and quadratic electro-optical effects. J. Phys. D: Appl. Phys. 53(12), 125106 (2020a)
Steglich, P.: Electric field-induced linear electro-optic effect observed in silicon-organic hybrid ring resonator. IEEE Photonics Technol. Lett. 32(9), 526–529 (2020b)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rabus, D.G., Sada, C. (2020). Sensors. In: Integrated Ring Resonators. Springer Series in Optical Sciences, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-60131-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-60131-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60130-0
Online ISBN: 978-3-030-60131-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)