Skip to main content

Sensors

  • 1542 Accesses

Part of the Springer Series in Optical Sciences book series (SSOS,volume 127)

Abstract

Integrated optical sensors are and have been investigated since a long period of time and have found their way into many applications. Ring resonator can be used as sensing elements for example by measuring the resonance frequency shift, which is induced by a change in the effective refractive index. Integrated waveguide-based sensors have gained attention since the downturn of the telecommunication industry left several research groups looking for other fields of application. But this is not the only cause. The focus of research has turned more and more towards biology where single molecule and single cell detection are the envisaged goal. This chapter provides an overview of sensors based on integrated ring resonators in microfluidics, optofluidics and special focus on biosensors. The following examples demonstrate the wide range of application of integrated ring resonators which has grown tremendously in the last 20 years.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adar, R., Shani, Y., Henry, C.H., Kistler, R.C., Blonder, G.E., Olsson, N.A.: Measurement of very low-loss silica on silicon waveguides with a ring resonator. Appl. Phys. Lett. 58, 444–445 (1991)

    Google Scholar 

  • Bhola, B., Song, H.C., Tazawa, H., Steier, W.H.: Polymer microresonator strain sensors. IEEE Photonics Technol. Lett. 14, 867–869 (2005)

    CrossRef  ADS  Google Scholar 

  • Blair, S., Chen, Y.: Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001)

    Google Scholar 

  • Boyd, R.W., Heebner, J.E.: Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)

    Google Scholar 

  • Campanella, C.F., De Leonardis, Passaro, V.: A high efficiency label-free photonic biosensor based on vertically stacked ring resonators. Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014)

    Google Scholar 

  • Carriere, J.T.A., Frantz, J.A., Youmans, B.R., Honkanen, S., Kostuk, R.K.: Measurement of waveguide birefringence using a ring resonator. IEEE Photonics Technol. Lett. 16, 1134–1136 (2004)

    CrossRef  ADS  Google Scholar 

  • Chao, C.Y., Guo, L.J.: Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)

    Google Scholar 

  • Claes, T., Bogaerts, W., Bienstman, P.: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 18(22), 22747–22761 (2010)

    CrossRef  ADS  Google Scholar 

  • Dai, D.: Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 17(26), 23817–23822 (2009)

    CrossRef  ADS  Google Scholar 

  • De Leonardis, F., Campanella, C.E., Troia, B., Perri A.G., Passaro, V.M.: Performance of SOI Bragg grating ring resonator for nonlinear sensing applications. Sensors (Basel) 14(9), 16017–16034 (2014)

    Google Scholar 

  • Fan, S.: Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002)

    Google Scholar 

  • Geidel, S., Peransi Llopis, S., Rodrigo, M., De Diego-Castilla, G., Sousa, A., Nestler, J., Otto, T., Gessner, T., Parro, V.: Integration of an optical ring resonator biosensor into a self-contained microfluidic cartridge with active single-shot micropumps. Micromachines 7, 153 (2016)

    CrossRef  Google Scholar 

  • Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013)

    CrossRef  ADS  Google Scholar 

  • Han, X.Y., Wu, Z.L., Yang, C.L., et al.: Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers 10(6): 603–631 (2018)

    Google Scholar 

  • Jaruwongrungsee, K., Waiwijit, U., Withayachumnankul, W., Maturos, T., Phokaratkul, D., Tuantranont, A., Wlodarski, W., Martucci, A., Wisitsoraat, A.: Microfluidic-based split-ring-resonator sensor for real-time and label-free biosensing. Procedia Eng. 120, 163–166 (2015)

    CrossRef  Google Scholar 

  • Kim, G.D., Lee, H.S., Park, C.H., Lee, S.S., Lim, B.T., Bae, H.K., Lee, W.G.: Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 18(21), 22215–22221 (2010)

    CrossRef  ADS  Google Scholar 

  • Kim, H.T., Yu, M.: Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 24, 9501–9510 (2016)

    Google Scholar 

  • Kiyat, I., Kocabas, C., Aydinli, A.: Integrated micro ring resonator displacement sensor for scanning probe microscopies. J. Micromech. Microeng. 14, 374–381 (2004)

    Google Scholar 

  • Kotz, F., Risch, P., Arnold, K., et al.: Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nat. Commun. 10, 1439 (2019)

    CrossRef  ADS  Google Scholar 

  • Krioukov, E., Klunder, D.J.W., Driessen, A., Greve, J., Otto, C.: Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002)

    Google Scholar 

  • Ksendzov, Homer, M.L., Manfreda, A.M.: Integrated optics ring-resonator chemical sensor with polymer transduction layer. Electron. Lett. 40, 63–65 (2004)

    CrossRef  ADS  Google Scholar 

  • Kwon, M.S., Steier, W.H.: Microring-resonator-based sensor measuring both the concentration and temperature of a solution. Opt. Express 16(13), 9372–9377 (2008)

    CrossRef  ADS  Google Scholar 

  • Li, Z.: Optofluidic resonators and sensors. In: Bhushan, B. (eds.) Encyclopedia of Nanotechnology. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-007-6178-0_101012-1

  • Lu, T.W., Lee, P.T.: Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518–1526 (2009)

    Google Scholar 

  • Luan, E., Shoman, H., Ratner, D.M., Cheung, K.C., Chrostowski, L.: Silicon photonic biosensors using label-free detection. Sensors (Basel) 19(5), 3519 (2019)

    CrossRef  Google Scholar 

  • Minzioni, R., Osellame, C., Sada, S.Z., et al.: Roadmap in optofluidics. J. Opt. 19, 093003 (2017)

    CrossRef  ADS  Google Scholar 

  • Moldenhauer, L., Lipka, T., Venegas-Rojas, D., Igeta, T.H.K.: Optofluidic a-Si:H-based photonic lab-on-chip with dispersion engineered resonance spectra. IEEE Photonics Technol. Lett. 29(4), 412–415 (2017)

    CrossRef  ADS  Google Scholar 

  • Nauriyal, J., Song, M., Yu, R., Cardenas, J.: Fiber-to-chip fusion splicing for low-loss photonic packaging. Optica 6(5), 549–552 (2019)

    CrossRef  ADS  Google Scholar 

  • Puce, S., Rizzi, F., Spagnolo, B., Qualtieri, A., De Vittorio, M., Staufer, U.: 3D-microfabrication by two-photon polymerization of an integrated sacrificial stencil mask. Micro Nano Eng. 2, 70–75 (2019)

    CrossRef  Google Scholar 

  • Ren, J., Wang, L.H., Han, X.Y., Cheng, J.F., Lv, H.L., Wang, J.Y., et al.: Organic silicone sol-gel polymer as non-covalent carrier of receptor proteins for label-free optical biosensor application. ACS Appl. Mater. Interfaces 5, 386–394 (2013)

    Google Scholar 

  • Steglich, P., Hülsemann, M., Dietzel, B., Mai, A.: Optical biosensors based on silicon-on-insulator ring resonators: a review. Molecules 24(3), 519–525 (2019a)

    Google Scholar 

  • Steglich, P., Mai, C., Mai, A.: Silicon-organic hybrid photonic devices in a photonic integrated circuit technology. ECS J. Solid State Sci. Technol. 8(11), 217–221 (2019b)

    Google Scholar 

  • Steglich, P., Villringer, C., Dietzel, B., et al.: On-chip dispersion measurement of the quadratic electro-optic effect in nonlinear optical polymers using a photonic integrated circuit technology. IEEE Photonics J. 11(3), 1–10 (2019c)

    Google Scholar 

  • Sun, Y., Fan, X.: Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399, 205–211 (2011)

    Google Scholar 

  • Tasoglu, S., Folch, A.: 3D Printed Microfluidic Devices. Ed MDPI 0–211 (2019). ISBN 3038974676, 9783038974673

    Google Scholar 

  • Wang, L.H., Ren, J., Han, X.Y., Claes, T., Jian, X.G., Bienstman, P., Baets, R., Zhao, M.S., Morthier, G.: A label-free optical biosensor built on a low cost polymer platform. IEEE Photonics J. 4, 920–930 (2012)

    CrossRef  ADS  Google Scholar 

  • Wang, J., Sanchez, M.M., Yin, Y., Herzer, R., Ma, L., Schmidt, O.G.: Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Adv. Mater. Technol. 5(6), 1901138 (2020)

    CrossRef  Google Scholar 

  • Wan, C., Gonzalez, J.L., Fan, T., Adibi, A., Gaylord, T.K., Bakir, M.S.: Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technol. Lett. 31(16), 1311–1314 (2019)

    CrossRef  ADS  Google Scholar 

  • Weituschat, L.M., Dickmann, W., Guimbao, J., Ramos, D., Kroker, S., Postigo, P.A.: Photonic and thermal modelling of microrings in silicon, diamond and gan for temperature sensing. Nanomaterials 10(5), 934 (2020)

    Google Scholar 

  • White, I.M., Fan, X.: On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    Google Scholar 

  • Xu, H., Hafezi, M., Fan, J., Taylor, J.M., Strouse, G.F., Ahmed, Z.: Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 3098–3104 (2014)

    CrossRef  ADS  Google Scholar 

  • Yalcın, A., Popat, K.C., Aldridge, J.C., Desai, T.A., Hryniewicz, J., Chbouki, N., Little, B.E., King, O., Van, V., Chu, S.T., Gill, D., Anthes-Washburn, M., Ünlü, M.S., Goldberg, B.B.: Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Topics Quantum Electron. 12, 148–155 (2006)

    Google Scholar 

  • Ye, N.Y., Michel, J., Kimerling, L.C.: Athermal high-index-contrast waveguide design. IEEE Photonics Technol. Lett. 20(11), 885–887 (2008)

    CrossRef  ADS  Google Scholar 

  • Zamora, V., Lützow, P., Weiland, M., Pergande, D.: Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm. Opt. Express 21(23), 27550–27557 (2013)

    Google Scholar 

  • Steglich, P., Mai, C., Villringer, C., Mai, A.: Direct observation and simultaneous use of linear and quadratic electro-optical effects. J. Phys. D: Appl. Phys. 53(12), 125106 (2020a)

    Google Scholar 

  • Steglich, P.: Electric field-induced linear electro-optic effect observed in silicon-organic hybrid ring resonator. IEEE Photonics Technol. Lett. 32(9), 526–529 (2020b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Gerhard Rabus .

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabus, D.G., Sada, C. (2020). Sensors. In: Integrated Ring Resonators. Springer Series in Optical Sciences, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-60131-7_6

Download citation