Skip to main content

Materials, Fabrication and Characterization Methods

  • 1578 Accesses

Part of the Springer Series in Optical Sciences book series (SSOS,volume 127)

Abstract

Recently, advancing fabrication technologies enabled the realization of ring resonators in many material systems with excellent optical properties. In this chapter ring resonators made of different materials using corresponding manufacturing processes will be presented based on the current state-of-the-art in literature. Device performance details will be given in Chap. 5.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ®™* Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow.

  2. 2.

    https://www.ioffe.ru/SVA/NSM/nk/Oxides/Gif/sio2.gif.

  3. 3.

    https://www.ioffe.ru/SVA/NSM/nk/Nitrides/Gif/si3n4.gif.

  4. 4.

    www.ibm.zurich.com.

  5. 5.

    https://www.ioffe.ru/SVA/NSM/nk/A3B5/Gif/inp.gif.

  6. 6.

    https://www.ioffe.ru/SVA/NSM/nk/A3B5/Gif/gaas.gif.

  7. 7.

    760 Torr = 1 atm = 101,325 kPa = 1013,25 h Pa = 101,325 bar.

  8. 8.

    Standard temperature and pressure. The volume measurement is made at or adjusted to a temperature of 0 °C and a pressure of 1 atmosphere, or 101.325 kPa.

  9. 9.

    Introduction of deuterium into the chemical compound.

  10. 10.

    Trademark of the Fraunhofer–Gesellschaft zur Forderung der angewandten Forschung e.V. München.

References

  • Absil, P.P.: Microring resonators for wavelength division multiplexing and integrated photonics applications. Ph.D. thesis, University of Maryland, College Park (2000)

    Google Scholar 

  • Absil, P.P., Hryniewicz, J.V., Little, B.E., Johnson, F.G., Ritter, K.J., Ho, P.T.: Vertically coupled microring resonators using polymer wafer bonding. IEEE Photonics Technol. Lett. 13, 49–51 (2001)

    CrossRef  ADS  Google Scholar 

  • Ahmed, A.N.R., Shi, S., Zablocki, M., Yao, P., Prather, D.W.: Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 44, 618–621 (2019)

    Google Scholar 

  • Alexe, M., Gösele, U. (eds.): Wafer Bonding. Applications and Technology. Springer, Berlin (2004)

    Google Scholar 

  • Bahadori, M., Goddard, L.L., Gong, S.: Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Optics Express 28(9), 13731–13749 (2020)

    Google Scholar 

  • Bar-On, O., Brenner, P., Siegle, T., et al.: High quality 3D photonics using nano imprint lithography of fast sol-gel materials. Sci. Rep. 8, 7833 (2018)

    CrossRef  ADS  Google Scholar 

  • Barwicz, T., Popovic, M.A., Rakich, P.T., Watts, M.R., Haus, H.A., Ippen, E.P., Smith, H.I.: Microring-resonator-based add-drop filters in SiN: fabrication and analysis. Opt. Express 12, 1437–1442 (2004)

    CrossRef  ADS  Google Scholar 

  • Bazzan, M., Sada, C.: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2, 040603–23 (2015)

    Google Scholar 

  • Betts, R.A., Pitt C.W.: Growth of thin-film lithium niobate by molecular beam epitaxy. Electr. Lett. 21(2), 960–2 (1985)

    Google Scholar 

  • Boes, A., Corocoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12, 1700256–1700325 (2018)

    CrossRef  ADS  Google Scholar 

  • Bogaerts, W., DeHeyn, P., Van Vaerenbergh, T., DeVos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., VanThourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Google Scholar 

  • Brüske, D., Suntsov, S., Rüter, C.E., Kip, D.: Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in- diffusion. Opt. Express 25(23), 29374–9 (2017)

    Google Scholar 

  • Caspar, A., Roussey, M., Häyrinen, M., Laukkanen, J., Pérignon, A., Behague, F., Calero, V., Ulliac, G., Bernal, M.P., Kuittinen, M., Courjal, N.: High-aspect-ratio LiNbO3 ridge waveguide with vertical buffer layer and enhanced electro-optical efficiency. J. Lightwave Technol. 36, 2702–2707 (2018)

    CrossRef  ADS  Google Scholar 

  • Castaldini, D., Bassi, P., Tascu, S., Aschieri, P., De Micheli, M.P., Baldi, P.: Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices. J. Lightwave Technol. 25(6), 1588–1592 (2007)

    CrossRef  ADS  Google Scholar 

  • Chandrahalim, H., Fan, X.: Reconfigurable solid-state dye-doped polymer ring resonator lasers. Sci. Rep. 5, 18310 (2015)

    Google Scholar 

  • Chao, C.Y., Guo, L.J.: Polymer microring resonators fabricated by nanoimprint technique. J. Vac. Sci. Technol. B 20, 2862–2866 (2002)

    CrossRef  Google Scholar 

  • Chao, C.Y., Guo, L.J.: Reduction of surface scattering loss in polymer microrings using thermal-reflow technique. IEEE Photonics Technol. Lett. 16, 1498–1500 (2004)

    CrossRef  ADS  Google Scholar 

  • Chen, C., Pang, L., Lu, Q., Wang, L., Tan, Y., Wang, Z., Chen, F.: Refractive index engineering through swift heavy ion irradiation of LiNbO3 crystal towards improved light guidance. Sci. Rep. 7, 10805–10812 (2017)

    CrossRef  ADS  Google Scholar 

  • Chen, W.Y., Grover, R., Ibrahim, T.A., Van, V., Herman, W.N., Ho, P.T.: High-finesse laterally coupled single-mode benzocyclobutene microring resonators. IEEE Photonics Technol. Lett. 16, 470–472 (2004)

    CrossRef  ADS  Google Scholar 

  • Chen, L., Xiu, Q., Wood, G., Reano, R.M.: Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2), 112–118 (2014)

    CrossRef  ADS  Google Scholar 

  • Chin, M.K., Xu, C., Huang, W.: Theoretical approach to a polarization insensitive single-mode microring resonator. Opt. Express 12, (2004)

    ADS  Google Scholar 

  • Choi, S.J., Djordjev, K., Choi, S.J., Dapkus, P.D.: CH4-based dry etching of high Q InP microdisks. J. Vac. Sci. Technol., B 20, 301–305 (2002)

    CrossRef  Google Scholar 

  • Choi, S.J., Djordjev, K., Peng, Z., Yang, Q., Choi, S.J., Dapkus, P.D.: Laterally coupled buried heterostructure high-Q ring resonators. IEEE Photonics Technol. Lett. 16, 2266–2268 (2004a)

    CrossRef  ADS  Google Scholar 

  • Choi, S.J., Djordjev, K., Choi, S.J., Dapkus, P.D., Lin, W., Griffel, G., Menna, R., Connolly, J.: Microring resonators vertically coupled to buried heterostructure bus waveguides. IEEE Photonics Technol. Lett. 16, 828–830 (2004b)

    CrossRef  ADS  Google Scholar 

  • Christiaens I.: Vertically coupled microring resonators fabricated with wafer bonding. PhD Thesis Ghent University, ISBN 90–8578–020–9 (2005)

    Google Scholar 

  • Christiaens, I., Roelkens, G., De Mesel, K., Van Thourhout, D., Baets, R.: Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding. IEEE J. Lightwave Technol. 23, 517–523 (2004)

    CrossRef  ADS  Google Scholar 

  • Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Kokubun, Y.: Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add–drop filters. IEEE Photonics Technol. Lett. 11, 1423–1425 (1999a)

    Google Scholar 

  • Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Kokubun, Y.: Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technol. Lett. 11, 1426–1428 (1999b)

    CrossRef  ADS  Google Scholar 

  • Chu, S.T., Pan, W., Suzuki, S., Little, B.E., Sato, S., Kokubun, Y.: Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technol. Lett. 11, 1138–1140 (1999c)

    CrossRef  ADS  Google Scholar 

  • Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Sato, S., Kokubun, Y.: An eight-channel add–drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technol. Lett. 11, 691–693 (1999a)

    CrossRef  ADS  Google Scholar 

  • Ciminellin, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Label-free optical resonant sensors for biochemical applications. Prog. Quant. Electron. 37, 51–107 (2013)

    Google Scholar 

  • Courjal, N., Guichardaz, B., Ulliac, G., Rauch, J.Y., Sadani, B., Lu, H.H., Bernal, M.P.: High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D Appl. Phys. 44(30), 305101–7 (2011)

    Google Scholar 

  • Courjal, N., Bernal, M.P., Caspar, A., Ulliac, G., Bassignot, F., Gauthier-Manuel, L., Suarez, M.: Lithium niobate optical waveguides and microwaveguides. In: You, K.Y. (ed.) Emerging Wavelength Technology (IntechOpen, 2016), Chapter 8 (2016). https://doi.org/10.5772/intechopen.76798. Available from: https://www.intechopen.com/books/emerging-waveguide-technology/lithium-niobate-optical-waveguides-and-microwaveguides

  • Della Corte, F.G., Cocorullo, G., Iodice, M., Rendina, I.: Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm. Appl. Phys. Lett. 77, 1614–1616 (2000)

    CrossRef  ADS  Google Scholar 

  • Diziain, S., Geiss, R., Steinert, M., Schmidt, C., Chang, W., Fasold, S., Fußel, D., Chen, Y., Pertsch, T.: Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes. Opt. Mater. Express 5(9):2081–2089 (2015)

    Google Scholar 

  • Djordjev, K.: Active microdisk resonant devices and semiconductor optical equalizers as building blocks for future photonic circuitry. Ph.D. thesis, University of Southern California (2002)

    Google Scholar 

  • Djordjev, K., Choi, S.J., Choi, S.J., Dapkus, P.D.: Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches. Appl. Phys. Lett. 80, 3467–3469 (2002a)

    CrossRef  ADS  Google Scholar 

  • Djordjev, K., Choi, S.J., Choi, S.J., Dapkus, P.D.: High-Q vertical-ly coupled InP microdisk resonators. IEEE Photonics Technol. Lett. 14, 331–333 (2002b)

    Google Scholar 

  • Dumon, P., Bogaerts, W., Wiaux, V., Wouters, J., Beckx, S., Van Campenhout, J., Taillaert, D., Luyssaert, B., Bienstman, P., Van Thourhout, D., Baets, R.: Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol. Lett. 16, 1328–1330 (2004)

    CrossRef  ADS  Google Scholar 

  • Feuchter, T., Thirstrup, C.: High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity. IEEE Photonics Technol. Lett. 6, 1244–1247 (1994)

    CrossRef  ADS  Google Scholar 

  • Fiedler, F., Schlachetzki, A.: Optical parameters of InP-based waveguides. Solid-State Electron. 30, 73–83 (1987)

    CrossRef  ADS  Google Scholar 

  • Geiss, R., Diziain, S., Iliew, R., et al.: Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett. 97, 131109–11 (2010)

    Google Scholar 

  • Georgakilas, A., Deligeorgis, G., Aperathitis, E., Cengher, D., Hatzopoulos, Z., Alexe, M., Dragoi, V., Gösele, U., Kyriakis-Bitzaros, E.D., Minoglou, K., Halkias, G.: Wafer-scale integration of GaAs optoelectronic devices with standard Si integrated circuits using a low-temperature bonding procedure. Appl. Phys. Lett. 81, 5099–5101 (2002)

    CrossRef  ADS  Google Scholar 

  • Gerthoffer, A., Guyot, C., Qui, W., Ndao, A., Bernal, M.P., Courjal, N.: Strong reduction of propagation losses in LiNbO3 ridge waveguides. Opt. Mater. 38(4), 37–41 (2014)

    Google Scholar 

  • Gottesman, Y., Rao, E.V.K., Rabus, D.G.: New methodology to evaluate the performance of ring resonators using optical low-coherence reflectometry. IEEE J. Lightwave Technol. 6, 1566–1572 (2004)

    CrossRef  ADS  Google Scholar 

  • Griffel, G., Abeles, J.H., Menna, R.J., Braun, A.M., Connolly, J.C., King, M.: Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching. IEEE Photonics Technol. Lett. 12, 146–148 (2000)

    CrossRef  ADS  Google Scholar 

  • Grover, R.: Indium phosphide based optical micro-ring resonators. Ph.D. thesis, University of Maryland, College Park (2003)

    Google Scholar 

  • Grover, R., Absil, P.P., Van, V., Hryniewicz, J.V., Little, B.E., King, O., Johnson, F.G., Calhoun, L.C., Ho, P.T.: Vertically coupled GaAs-AlGaAs and GaInAsP-InP microring resonators. In: Proceedings of OFC Paper WK2–1 (2001c)

    Google Scholar 

  • Grover, R., Ibrahim, T.A., Ding, T.N., Leng, Y., Kuo, L.C., Kanakaraju, S., Amarnath, K., Calhoun, L.C., Ho, P.T.: Laterally coupled InP-based single-mode microracetrack notch filter. IEEE Photonics Technol. Lett. 15, 1082–1084 (2003)

    CrossRef  ADS  Google Scholar 

  • Grover, R., Hryniewicz, J.V., King, O.S., Van, V.: Process development of methane-hydrogen-argon-based deep dry etching of InP for high aspect-ratio structures with vertical facet-quality sidewalls. J. Vac. Sci. Technol., B 19, 1694–1698 (2001a)

    CrossRef  Google Scholar 

  • Grover, R., Absil, P.P., Van, V., Hryniewicz, J., Little, B.E., King, O., Calhoun, L.C., Johnson, F.G., Ho, P.T.: Vertically coupled GaInAsP-InP microring resonators. Opt. Lett. 26, 506–508 (2001b)

    CrossRef  ADS  Google Scholar 

  • Guarino, A., Poberaj, G., Rezzonico, D., Degli’Innocenti, R., Gunter, P.: Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 1, 407–410 (2007)

    CrossRef  ADS  Google Scholar 

  • Haavisto, J., Pajer, G.A.: Resonance effects in low-loss ring waveguides. Opt. Lett. 5, 510–512 (1980)

    CrossRef  ADS  Google Scholar 

  • Hakki, B.W., Paoli, T.L.: Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46, 1299–1306 (1975)

    CrossRef  ADS  Google Scholar 

  • Hamacher, M., Kaiser, R., Heidrich, H., Albrecht, P., Borchert, B., Janiak, K., Löffler, R., Malchow, S., Rehbein, W., Schroeter-Janßen, H.: Monolithic integration of lasers, photodiodes, waveguides and spot size converters on GaInAsP/InP for photonic IC applications. In: Proceedings of IPRM, pp. 21–24 (2000)

    Google Scholar 

  • Hartung, H., Kley, E.B., Tünnermann, A., Gischkat, T., Schrempel, F., Wesch, W.: Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. Opt. Lett. 33, 2320–2322 (2008)

    Google Scholar 

  • Haruna, M., Segawa, Y., Nishihara, H.: Nondestructive and simple method of optical-waveguide loss measurement with optimization of end-fire coupling. Electron. Lett. 28, 1612–1613 (1992)

    CrossRef  ADS  Google Scholar 

  • Hatakeyama, Y., Hanai, T., Suzuki, S., Kokubun, Y.: Loss-Less multilevel crossing of busline waveguide in vertically coupled microring resonator filter. IEEE Photonics Technol. Lett. 16, 473–475 (2004)

    CrossRef  ADS  Google Scholar 

  • Headley, W.R., Reed, G.T., Howe, S., Liu, A., Paniccia, M.: Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl. Phys. Lett. 85, 5523–5525 (2004)

    CrossRef  ADS  Google Scholar 

  • Hida, Y., Imamura, S., Izawa, T.: Ring resonator composed of low loss polymer waveguides at 1.3 μm. Electron. Lett. 28, 1314–1316 (1992)

    CrossRef  ADS  Google Scholar 

  • Horst, F., Salemink, H.W.M., Germann, R., Offrein, B.J., Bona, G.L.: High quality ring resonators in high refractive index contrast SiON waveguides. In: Proceedings of 1998 IEEE/LEOS Symposium, Benelux Chapter, pp. 33–36 (1998)

    Google Scholar 

  • Hu, H., Ricken, R., Sohler, W., Wehrspohn, R.B.: Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technol. Lett. 19(6), 417–419 (2007)

    Google Scholar 

  • Hu, H., Ricken, R., Sohler, W.: Lithium niobate photonic wires. Opt. Express 17, 24261–24268 (2009)

    Google Scholar 

  • Huang, Y., Paloczi, G.T., Scheuer, J., Yariv, A.: Soft lithography replication of polymeric microring optical resonators. Opt. Express 11, 2452–2458 (2003)

    CrossRef  ADS  Google Scholar 

  • Huang, Y., Paloczi, G.T., Poon, J.K.S., Yariv, A.: Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices. Adv. Mater. 16, 44–48 (2004)

    CrossRef  Google Scholar 

  • Janner, D., Tulli, D., García-Granda, M., Belmonte, M., Pruneri, V.: Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 3(3), 301–13 (2009)

    Google Scholar 

  • Jin, S., Xu, L., Zhang H., Li, Y.: LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett. 28(7), 736–739 (2016)

    Google Scholar 

  • Jung, H., Fong, K.Y., Xiong, C., Tang, H.X.: Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014)

    Google Scholar 

  • Kaiser, R., Heidrich, H.: Optoelectronic/Photonic integrated circuits on InP between technological feasibility and commercial success. IEICE Trans. Electron. E85-C, 970–981 (2002)

    Google Scholar 

  • Kaiser, R., Trommer, D., Heidrich, H., Fidorra, F., Hamacher, M.: Heterodyne receiver Pies as the first monolithically integrated tunable receivers for OFDM system applications. Opt. Quant. Electron. 28, 565–573 (1996)

    CrossRef  Google Scholar 

  • Keil, N., Yao, H.H., Zawadzki, C., Bauer, J., Bauer, M., Dreyer, C., Schneider, J.: Athermal all-polymer arrayed-waveguide grating multiplexer. Electron. Lett. 37, 579–580 (2001)

    CrossRef  ADS  Google Scholar 

  • Kim, M.J., Carpenter, R.W.: Heterogeneous silicon integration by ultra-high vacuum wafer bonding. J. Electron. Mater. 32, 849–854 (2003)

    CrossRef  ADS  Google Scholar 

  • Kim, D.H., Im, J.G., Lee, S.S., Ahn, S.W., Lee, K.D.: Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer. IEEE Photonics Technol. Lett. 17, 2352–2354 (2005a)

    CrossRef  ADS  Google Scholar 

  • Kim, D.G., Shin, J.H., Ozturk, C., Yi, J.C., Chung, Y., Dagli, N.: Total internal reflection mirror-based InGaAsP ring resonators integrated with optical amplifiers. IEEE Photonics Technol. Lett. 17, 1899–1901 (2005b)

    CrossRef  ADS  Google Scholar 

  • Kiyat, I., Aydinli, A., Dagli, N.: Polarization characteristics of compact SOI rib waveguide racetrack resonators. IEEE Photonics Technol. Lett. 17, 2098–2100 (2005)

    CrossRef  ADS  Google Scholar 

  • Klunder, D.J.W., Tan, F.S., van der Veen, T., Bulthuis, H.F., Sengo, G., Docter, B., Hoekstra, H.J.W.M., Driessen, A.: Experimental and numerical study of SiON microresonators with air and polymer cladding. IEEE J. Lightwave Technol. 21, 1099–1110 (2003)

    CrossRef  ADS  Google Scholar 

  • Klunder, D.J.W., Roeloffzen, C.G.H., Driessen, A.: A novel polarization-independent wavelength-division-multiplexing filter based on cylindrical microresonators. IEEE J. Sel. Top. Quantum Electron. 8, 1294–1299 (2002)

    CrossRef  ADS  Google Scholar 

  • Klunder, D.J.W., Krioukov, E., Tan, F.S., Van der Veen, T., Bulthuis, H.F., Sengo, G., Otto, C., Hoekstra, H.J.W.M., Driessen, A.: Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology. Appl. Phys. B LasersOpt. 73, 603–608 (2001)

    CrossRef  ADS  Google Scholar 

  • Koechlin, M.: Electro-optical microresonators in ion-sliced lithium niobate. PhD thesis ETH Zurich Koechlin, M., Poberaj, G., Günter, Rev. Sci. Instrum. 80, 085105-1–5 (2009)

    Google Scholar 

  • Koechlin, M., Poberaj, G., Günter, P.: Rev. Sci. Instrum. 80, 085105-1–5 (2009)

    Google Scholar 

  • Koechlin, M., Sulser, F., Sitar, Z., Poberaj, G., Gunter, P.: Free-standing lithium niobate microring resonators for hybrid integrated optics. IEEE Photonics Technol. Lett. 22(4): 251–253 (2010)

    Google Scholar 

  • Kokubun, Y., Funato, N., Takizawa, M.: Athermal waveguides for temperature-independent lightwave devices. IEEE Photonics Technol. Lett. 5, 1297–1300 (1993)

    CrossRef  ADS  Google Scholar 

  • Kokubun, Y., Yoneda, S., Tanaka, H.: Temperature-independent narrow-band optical filter by an athermal waveguide. IEICE Trans. Electron. E80-C, 632–639 (1997)

    Google Scholar 

  • Kokubun, Y., Kubota, S., Chu, S.T.: Polarization-independent vertically coupled microring resonator filter. Electron. Lett. 37, 90–92 (2001)

    CrossRef  ADS  Google Scholar 

  • Kokubun, Y., Hatakeyama, Y., Ogata, M., Suzuki, S., Zaizen, N.: Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius. J. Sel. Top. Quantum Electron. 11, 4–10 (2005)

    CrossRef  Google Scholar 

  • Koonath, P., Kishima, K., Indukuri, T., Jalali, B.: Sculpting of three-dimensional nano-optical structures in silicon. Appl. Phys. Lett. 83, 4909–4911 (2003)

    CrossRef  ADS  Google Scholar 

  • Koonath, P., Indukuri, T., Jalali, B.: Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon. Appl. Phys. Lett. 85, 1018–1020 (2004)

    CrossRef  ADS  Google Scholar 

  • Koonath, P., Indukuri, T., Jalalib, B.: Add-drop filters utilizing vertically coupled microdisk resonators in silicon. Appl. Phys. Lett. 86, 091102 (2005)

    CrossRef  ADS  Google Scholar 

  • Korkishko, Y., Fedorov, V.A.: Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics. (Cambridge International Science Publishing, Cambridge), pp. 97–261 (1999)

    Google Scholar 

  • Krasnokutska, J.L., Tambasco, J., Peruzzo, A.: Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 9, 11086 (2019)

    CrossRef  ADS  Google Scholar 

  • Langrock, C., Roussev, R.V., Nava, G., Minzioni, P., Argiolas, N., Sada, C., Fejer, M.M.: Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate. Appl. Opt. 55(24), 6559–6563 (2016)

    CrossRef  ADS  Google Scholar 

  • Lansiaux, X., Dogheche, E., Remiens, D., Guilloux-viry, M., Perrin, A., Ruterana, P.: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)

    Google Scholar 

  • Lawrence, M.: Lithium niobate integrated optics. Rep. Prog. Phys. 56, 363–429 (1993)

    CrossRef  ADS  Google Scholar 

  • Leinse, A.: Polymeric microring resonator based electro optic modulator. Ph.D. thesis, University of Twente (2005). ISBN 90-365-2168-8

    Google Scholar 

  • Leinse, L., Diemeer, M.B.J., Rousseau, A., Driessen, A.: Novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI. IEEE Photonics Technol. Lett. 17(10), 2074–2076 (2005)

    CrossRef  ADS  Google Scholar 

  • Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill, G.S., III., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998)

    CrossRef  ADS  Google Scholar 

  • Levy, M., Radojevic, A.M.: Wafer Bonding: Applications and Technology. In: Alexe, M., Gosele, U. (eds.) Springer Series in Material Sciences (Springer, Berlin, Heidelberg), pp. 417–450 (2004)

    Google Scholar 

  • Li, X.: All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  • Little, B.E., Chu, S.T., Absil, P.P., Hryniewicz, J.V., Johnson, F.G., Seiferth, F., Gill, D., Van, V., King, O., Trakalo, M.: Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol. Lett. 16, 2263–2265 (2004)

    CrossRef  ADS  Google Scholar 

  • Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W.: Ultra-compact Si–SiO microring resonator optical channel dropping filters. IEEE Photonics Technol. Lett. 10, 549–551 (1998)

    CrossRef  ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., Ippen, E.: Vertically coupled glass microring resonator channel dropping filters. IEEE Photonics Technol. Lett. 11, 215–217 (1999)

    CrossRef  ADS  Google Scholar 

  • Majkic, A., Poberaj, G., Günter, P.: Optical microring resonators in fluorine-implanted lithium niobate for electrooptical switching and filtering. IEEE Photonics Technol. Lett. 21(10), 639–641 (2009)

    CrossRef  ADS  Google Scholar 

  • Ma, Y., Chang, G., Park, S., Wang, L., Ho, S.T.: InGaAsP thin-film microdisk resonators fabricated by polymer wafer bonding for wavelength add-drop filters. IEEE Photonics Technol. Lett. 12, 1495–1497 (2000)

    CrossRef  ADS  Google Scholar 

  • Ma, H., Jen, A.K.Y., Dalton, L.R.: Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339–1365 (2002)

    CrossRef  Google Scholar 

  • Mahapatra, M., Robinson, W.C.: Integrated-optic ring resonators made by proton exchange in lithium niobate. Appl. Opt. 24, 2285–2286 (1985)

    Google Scholar 

  • Melloni, A., Costa, R., Monguzzi, P., Martinelli, M.: Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)

    CrossRef  ADS  Google Scholar 

  • Menon, V.M., Tong, W., Forrest, S.R.: Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 16, 1343–1345 (2004)

    CrossRef  ADS  Google Scholar 

  • Morichetti, F., Melloni, A.: Polarization converters based on ring resonator phase shifters. IEEE Photonics Technol. Lett. 18, 923–925 (2006)

    CrossRef  ADS  Google Scholar 

  • Naden, J.M, Weiss, B.L.: Ion-implanted integrated optical waveguides in lithium niobate. Radio and Electronic Engineer 54(5), 227–230 (1984)

    Google Scholar 

  • Niehusmann, J., Vrckel, A., Bolivar, P.A., Wahlbrink, T., Kurz, H.: Ul-trahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29(24), 2861–2863 (2004)

    Google Scholar 

  • Pagano, P.L., Presti, D., Peyton, R.R., Videla, F.A., Torchia, G.A.: Design conditions in the middle range for implementation of integrated ring resonators in LiNbO3 by direct laser writing. IET Optoelectro. 14(3), 104–108 (2020)

    Google Scholar 

  • Paloczi, G.T., Huang, Y., Yariv, A.: Free-standing all-polymer microring resonator optical filter. Electron. Lett. 39, 1650–1651 (2003)

    CrossRef  ADS  Google Scholar 

  • Park, K.H., Kim, M.W., Byun, Y.T., Woo, D., Kim, S.H., Choi, S.S., Chung, Y., Cho, W.R., Park, S.H., Kim, U.: Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides. J. Appl. Phys. 78, 6318–6320 (1995)

    CrossRef  ADS  Google Scholar 

  • Poberaj, G., Koechlin, M., Sulser, F., Guarino, A., Hajfler, J., Günter, P.: Ion-sliced lithium niobate thin films for active photonic devices. Opt. Mater. 31, 1054–1058 (2009)

    CrossRef  ADS  Google Scholar 

  • Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)

    CrossRef  ADS  Google Scholar 

  • Poon, J.K.S., Huang, Y., Paloczi, G.T., Yariv, A.: Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photonics Technol. Lett. 16, 2496–2498 (2004)

    CrossRef  ADS  Google Scholar 

  • Quidant, R., Weeber, J.C., Dereux, A., Leveque, G., Weiner, J., Girard, C.: Addressing and imaging microring resonators with optical evanescent light. Phys. Rev. B 69, 081402(R) (2004)

    CrossRef  ADS  Google Scholar 

  • Rabiei, P., Steier, W.H., Zhang, C., Dalton, L.R.: Polymer Micro-ring filters and modulators. IEEE J. Lightwave Technol. 20, 1968–1975 (2002)

    CrossRef  ADS  Google Scholar 

  • Rabiei, P., Ma, J., Khan, S., Chiles, J., Fathpour, S.: Heterogeneous lithium niobate photonics on silicon substrates. Opt Express 21, 25573–25581 (2013)

    CrossRef  ADS  Google Scholar 

  • Rabus, D.G.: Realization of Optical Filters using Ring Resonators with Integrated Semiconductor Optical Amplifiers in GaInAsP/InP. Der Andere Verlag (2002)

    Google Scholar 

  • Rabus, D.G., Hamacher, M.: MMI-coupled ring resonators in GaInAsP-InP. IEEE Photonics Technol. Lett. 8, 812–814 (2001)

    CrossRef  ADS  Google Scholar 

  • Rabus, D.G., Hamacher, M., Heidrich, H., Troppenz, U.: High Q channel dropping filters using ring resonators with integrated SOAs. IEEE Photonics Technol. Lett. 10, 1442–1444 (2002)

    CrossRef  ADS  Google Scholar 

  • Radojevic, A.M., Levy, M., Osgood Jr, R.M.: Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3LiNbO3 films. Appl. Phys. Lett. 74, 3197–3200 (1999)

    Google Scholar 

  • Rafizadeh, R., Zhang, J.P., Hagness, S.C., Taflove, A., Stair, K.A., Ho, S.T., Tiberio, R.C.: Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spec-tral range. Opt. Lett. 22, 1244–1246 (1997)

    Google Scholar 

  • Rambu, A.P., Apetrei, A.M., Doutre, F., Tronche, H., de Micheli, M., Tascu, S.: Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. J. Lightwave Technol. 36(13), 2675–2684 (2018)

    Google Scholar 

  • Rao, A., Patil, A., Chiles, J., Malinowski, M., et al.: Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 23(17), 22746 (2015)

    CrossRef  ADS  Google Scholar 

  • Regener, R., Sohler, W.: Loss in low finesse Ti:LiNbO3 optical waveguide resonators. Appl. Phys. B 36, 143–147 (1985)

    CrossRef  ADS  Google Scholar 

  • Rezzonico, D., Guarino, A., Herzog, C., Jazbinsek, M., Gunter, P.: High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics. IEEE Photonics Technol. Lett. 18, 865–867 (2006)

    CrossRef  ADS  Google Scholar 

  • Rommel, S.L., Jang, J.H., Lu, W., Cueva, G., Zhou, L., Adesida, I., Pajer, G., Whaley, R., Lepore, A., Schellanbarger, Z., Abeles, J.H.: Effect of H2 on the etch profile of InP/InGaAsP alloys in Cl2/Ar/H2 induc-tively coupled plasma reactive ion etching chemistriesfor photonic device fabrication. J. Vac. Sci. Technol. B 20, 1327–1330 (2002)

    Google Scholar 

  • Sakamoto, S.R., Ozturk, C., Byun, Y.T., Ko, J., Dagli, N.: Low-loss substrate-removed (SURE) optical waveguides in GaAs–AlGaAs epitaxial layers embedded in organic polymers. IEEE Photonics Technol. Lett. 10, 985–987 (1998)

    CrossRef  ADS  Google Scholar 

  • Sakashita, Y., Segawa, H.J.: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77, 5995–5999 (1995)

    Google Scholar 

  • Saulys, D., Joshkin, V., Khoudiakov, M., Kuech, T.K., Ellis, A.B., Oktyabrsky, S.R., McCaughan, L.: An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions. J. Cryst. Growth 217, 287–301 (2000)

    Google Scholar 

  • Shnneidman, A., Becker, K., Lukas M., et al.: All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics 5 (2018). https://doi.org/10.1021/acsphotonics.8b00022

  • Siew Shawn, Y., Saha, S.S., Tsang, M., Danner, A.J.: Rib microring resonators in lithium niobate on insulator. IEEE Photonics Technol. Lett. 28(5), 573–576 (2016)

    Google Scholar 

  • Solmaz, M.E., Adams, D.B., Tan, W.C., Snider, W.T., Madsen, C.K.: Vertically integrated As2S3 ring resonator on LiNbO3. Opt. Lett. 34(11), 1735 (2009)

    Google Scholar 

  • Song, J.H., Park, J.W., Sim, E.D., Baek, Y.: Measurements of coupling and reflection characteristics of butt-joints in passive waveguide integrated laser diodes. IEEE Photonics Technol. Lett. 17, 1791–1793 (2005)

    CrossRef  ADS  Google Scholar 

  • Sulser, F., Poberaj, K.M., Günter, P.: Photonic crystal structures in ion-sliced lithium niobate thin films. Opt. Express 17(22), 20291–20300 (2009)

    CrossRef  ADS  Google Scholar 

  • Suzuki, S., Shuto, K., Hibino, Y.: Integrated-optic ring resonators with two stacked layers of silica waveguide on Si. IEEE Photonics Technol. Lett. 4, 1256–1258 (1992)

    CrossRef  ADS  Google Scholar 

  • Suzuki, S., Yanagisawa, M., Hibino, Y., Oda, K.: High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference. IEEE J. Lightwave Technol. 12, 790–796 (1994)

    CrossRef  ADS  Google Scholar 

  • Takigawa, R., Asano, T.: Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer. Opt. Express 26(19), 24413–24421 (2018)

    Google Scholar 

  • Tazawa, H., Kuo, Y.H., Dunayevskiy, L.I.J.D., Jen, A.K.Y., Fetterman, H.R., Steier, W.H.: Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol. 24(9), 3514–3519 (2006)

    CrossRef  ADS  Google Scholar 

  • Tee, C.W., Williams, K.A., Penty, R.V., White, I.H.: Fabrication-tolerant active–passive integration scheme for vertically coupled microring resonator. IEEE J. Sel. Top. Quantum Electron. 12, 108–116 (2006)

    CrossRef  ADS  Google Scholar 

  • Teng, J., Scheerlinck, S., Zhang, H., Jian, X., et al.: A PSQ-L polymer microring resonator fabricated by a simple UV-based soft-lithography process. IEEE Photonics Technol. Lett. 21(18), 1323–1325 (2009)

    Google Scholar 

  • Tishinin, D.V., Dapkus, P.D., Bond, A.E., Kim, I., Lin, C.K., O’Brien, J.: Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding. IEEE Photonics Technol. Lett. 11, 1003–1005 (1999)

    CrossRef  ADS  Google Scholar 

  • Tsou, D.H., Chou, M.H., Santhanaraghavan, P., Chen, Y.H., Huang, Y.C.: Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides. Mat. Chem. Phys. 78, 474–479 (2002)

    CrossRef  Google Scholar 

  • van Dam, C., Spiekman, L.H., van Ham, F.P.G.M., Groen, F.H., van der Tol, J.J.G.M., Moerman, I., Pascher, W.W., Hamacher, M., Heidrich, H., Weinert, C.M., Smit, M.K.: Novel compact polarization converters based on ultra short bends. IEEE Photonics Technol. Lett. 8, 1346–1348 (1996)

    CrossRef  Google Scholar 

  • Vander Rhodes, G.H., Goldberg, B.B., Ünlü, M.S., Chu, S.T., Little, B.E.: Internal spatial modes in glass microring resonators. IEEE J. Sel. Top. Quantum Electron. 6, 46–53 (2000)

    CrossRef  ADS  Google Scholar 

  • Vanderhaegen, B., Van Thourhout, D., De Merlier, J., Sarlet, G., Vanwassenhove, L., Moerman, I., Van Daele, P., Baets, R.: High Q InGaAsP ring resonator filters. In: Proceedings of the 9th European Conference on Integrated Optics and Technical Exhibition (ECIO 99), Italy, pp. 381–384 (1999)

    Google Scholar 

  • Van, V., Little, B.E., Chu, S.T., Hryniewicz, J.V.: Micro ring resonator filters. In: Proceedings of LEOS Annual Meeting, vol. 2, pp. 571–572 (2004)

    Google Scholar 

  • Vörckel, A., Mönster, M., Henschel, W., Bolivar, P.H., Kurz, H.: Asymmetrically coupled silicon-on-insulator microring resonators for compact add–drop multiplexers. IEEE Photonics Technol. Lett. 15, 921–923 (2003)

    CrossRef  ADS  Google Scholar 

  • Wang, T.J., Huang, Y.H., Chen, H.L.: Resonant-wavelength tuning of microring filters by oxygen plasma treatment. IEEE Photonics Technol. Lett. 17, 582–584 (2005)

    CrossRef  ADS  Google Scholar 

  • Wang, T., Ma, Z., Hung, W.K.: Integrated-optic wavelength demultiplexer on lithium niobate by double proton exchange. Opt. Eng. 46(2), 024601–024605 (2007)

    CrossRef  ADS  Google Scholar 

  • Wang, L.H., Ren, J., Han, X.Y., Claes, T., Jian, X.G., Bienstman, P., Baets, R., Zhao, M.S., Morthier, G.: A label-free optical biosensor built on a low cost polymer platform. IEEE Photonics J. 4, 920–930 (2012)

    Google Scholar 

  • Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Loncar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–4 (2018a)

    Google Scholar 

  • Wang, C., Zhang, M., Stern, B., Lipson, M., Lončar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–55 (2018b)

    Google Scholar 

  • Watts, M.R., Qi, M., Barwicz, T., Popovic, M., Rakich, P., Socci, L., Ippen, E.P., Kaertner, F., Smith, H.I. (2005) Towards polarization independent high-index contrast microphotonics. In: Proceedings of XXVIIIth URSI General Assembly

    Google Scholar 

  • Wooten, L., Kissa, K.M., Yi-Yan, A., Murphy, E., Lafaw, D., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., Bossi, D.E.: A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)

    Google Scholar 

  • Wu, R., Wang, M., Xu, J., Qi, J., Chu, W., Fang, Z., Zhang, J., Zhou, J., Qiao, L., Chai, Z., Lin, J., Cheng, Y.: Low-loss Lithium Niobate on Insulator (LNOI) Waveguides of a 10 cm-length and a Subnanometer Surface Roughness. Nanomaterials (Basel) 8(11), 910–919 (2018)

    CrossRef  Google Scholar 

  • Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    CrossRef  ADS  Google Scholar 

  • Xu, Q.F., Schmidt, B., Shakya, J., Lipson, M.: Cascaded silicon micro-ring modulators for WDM optical interconnections. Opt. Express 14(20), 9430–9435 (2006)

    CrossRef  ADS  Google Scholar 

  • Yao, Y., Wang, W., Zhang, B.: Designing MMI structured beam-splitter in LiNbO3 crystal based on a combination of ion implantation and femtosecond laser ablation. Opt. Express 26(15), 19648–19656 (2018)

    CrossRef  ADS  Google Scholar 

  • Yoon, J.G., Kim, K.: Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. App. Phys. Lett. 68, 2523–2525 (1996)

    Google Scholar 

  • Zhang, M., Wang, C., Cheng, R., Shams-Ansari, S., Lončar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017)

    CrossRef  ADS  Google Scholar 

  • Zhang, D.L., Kang, J., Zhang, Q., Du, W.J., Wong, W.H., Pun, E.Y.B.: Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics. Opt. Mater. Express 5(8), 1715–1721 (2015)

    CrossRef  ADS  Google Scholar 

  • Zhang, D., Men, L., Chen, Q.: Tuning the performance of polymeric microring resonator with femtosecond laser. Opt. Commun. 125571 (2020)

    Google Scholar 

  • Zhou, L.J., Poon, W.: Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators. Opt. Express 14(15), 6851–6857 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Gerhard Rabus .

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabus, D.G., Sada, C. (2020). Materials, Fabrication and Characterization Methods. In: Integrated Ring Resonators. Springer Series in Optical Sciences, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-60131-7_3

Download citation