Abstract
Recently, advancing fabrication technologies enabled the realization of ring resonators in many material systems with excellent optical properties. In this chapter ring resonators made of different materials using corresponding manufacturing processes will be presented based on the current state-of-the-art in literature. Device performance details will be given in Chap. 5.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
®™* Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
760 Torr = 1 atm = 101,325 kPa = 1013,25 h Pa = 101,325 bar.
- 8.
Standard temperature and pressure. The volume measurement is made at or adjusted to a temperature of 0 °C and a pressure of 1 atmosphere, or 101.325 kPa.
- 9.
Introduction of deuterium into the chemical compound.
- 10.
Trademark of the Fraunhofer–Gesellschaft zur Forderung der angewandten Forschung e.V. München.
References
Absil, P.P.: Microring resonators for wavelength division multiplexing and integrated photonics applications. Ph.D. thesis, University of Maryland, College Park (2000)
Absil, P.P., Hryniewicz, J.V., Little, B.E., Johnson, F.G., Ritter, K.J., Ho, P.T.: Vertically coupled microring resonators using polymer wafer bonding. IEEE Photonics Technol. Lett. 13, 49–51 (2001)
Ahmed, A.N.R., Shi, S., Zablocki, M., Yao, P., Prather, D.W.: Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 44, 618–621 (2019)
Alexe, M., Gösele, U. (eds.): Wafer Bonding. Applications and Technology. Springer, Berlin (2004)
Bahadori, M., Goddard, L.L., Gong, S.: Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Optics Express 28(9), 13731–13749 (2020)
Bar-On, O., Brenner, P., Siegle, T., et al.: High quality 3D photonics using nano imprint lithography of fast sol-gel materials. Sci. Rep. 8, 7833 (2018)
Barwicz, T., Popovic, M.A., Rakich, P.T., Watts, M.R., Haus, H.A., Ippen, E.P., Smith, H.I.: Microring-resonator-based add-drop filters in SiN: fabrication and analysis. Opt. Express 12, 1437–1442 (2004)
Bazzan, M., Sada, C.: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2, 040603–23 (2015)
Betts, R.A., Pitt C.W.: Growth of thin-film lithium niobate by molecular beam epitaxy. Electr. Lett. 21(2), 960–2 (1985)
Boes, A., Corocoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12, 1700256–1700325 (2018)
Bogaerts, W., DeHeyn, P., Van Vaerenbergh, T., DeVos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., VanThourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)
Brüske, D., Suntsov, S., Rüter, C.E., Kip, D.: Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in- diffusion. Opt. Express 25(23), 29374–9 (2017)
Caspar, A., Roussey, M., Häyrinen, M., Laukkanen, J., Pérignon, A., Behague, F., Calero, V., Ulliac, G., Bernal, M.P., Kuittinen, M., Courjal, N.: High-aspect-ratio LiNbO3 ridge waveguide with vertical buffer layer and enhanced electro-optical efficiency. J. Lightwave Technol. 36, 2702–2707 (2018)
Castaldini, D., Bassi, P., Tascu, S., Aschieri, P., De Micheli, M.P., Baldi, P.: Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices. J. Lightwave Technol. 25(6), 1588–1592 (2007)
Chandrahalim, H., Fan, X.: Reconfigurable solid-state dye-doped polymer ring resonator lasers. Sci. Rep. 5, 18310 (2015)
Chao, C.Y., Guo, L.J.: Polymer microring resonators fabricated by nanoimprint technique. J. Vac. Sci. Technol. B 20, 2862–2866 (2002)
Chao, C.Y., Guo, L.J.: Reduction of surface scattering loss in polymer microrings using thermal-reflow technique. IEEE Photonics Technol. Lett. 16, 1498–1500 (2004)
Chen, C., Pang, L., Lu, Q., Wang, L., Tan, Y., Wang, Z., Chen, F.: Refractive index engineering through swift heavy ion irradiation of LiNbO3 crystal towards improved light guidance. Sci. Rep. 7, 10805–10812 (2017)
Chen, W.Y., Grover, R., Ibrahim, T.A., Van, V., Herman, W.N., Ho, P.T.: High-finesse laterally coupled single-mode benzocyclobutene microring resonators. IEEE Photonics Technol. Lett. 16, 470–472 (2004)
Chen, L., Xiu, Q., Wood, G., Reano, R.M.: Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2), 112–118 (2014)
Chin, M.K., Xu, C., Huang, W.: Theoretical approach to a polarization insensitive single-mode microring resonator. Opt. Express 12, (2004)
Choi, S.J., Djordjev, K., Choi, S.J., Dapkus, P.D.: CH4-based dry etching of high Q InP microdisks. J. Vac. Sci. Technol., B 20, 301–305 (2002)
Choi, S.J., Djordjev, K., Peng, Z., Yang, Q., Choi, S.J., Dapkus, P.D.: Laterally coupled buried heterostructure high-Q ring resonators. IEEE Photonics Technol. Lett. 16, 2266–2268 (2004a)
Choi, S.J., Djordjev, K., Choi, S.J., Dapkus, P.D., Lin, W., Griffel, G., Menna, R., Connolly, J.: Microring resonators vertically coupled to buried heterostructure bus waveguides. IEEE Photonics Technol. Lett. 16, 828–830 (2004b)
Christiaens I.: Vertically coupled microring resonators fabricated with wafer bonding. PhD Thesis Ghent University, ISBN 90–8578–020–9 (2005)
Christiaens, I., Roelkens, G., De Mesel, K., Van Thourhout, D., Baets, R.: Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding. IEEE J. Lightwave Technol. 23, 517–523 (2004)
Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Kokubun, Y.: Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add–drop filters. IEEE Photonics Technol. Lett. 11, 1423–1425 (1999a)
Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Kokubun, Y.: Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technol. Lett. 11, 1426–1428 (1999b)
Chu, S.T., Pan, W., Suzuki, S., Little, B.E., Sato, S., Kokubun, Y.: Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technol. Lett. 11, 1138–1140 (1999c)
Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Sato, S., Kokubun, Y.: An eight-channel add–drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technol. Lett. 11, 691–693 (1999a)
Ciminellin, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Label-free optical resonant sensors for biochemical applications. Prog. Quant. Electron. 37, 51–107 (2013)
Courjal, N., Guichardaz, B., Ulliac, G., Rauch, J.Y., Sadani, B., Lu, H.H., Bernal, M.P.: High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D Appl. Phys. 44(30), 305101–7 (2011)
Courjal, N., Bernal, M.P., Caspar, A., Ulliac, G., Bassignot, F., Gauthier-Manuel, L., Suarez, M.: Lithium niobate optical waveguides and microwaveguides. In: You, K.Y. (ed.) Emerging Wavelength Technology (IntechOpen, 2016), Chapter 8 (2016). https://doi.org/10.5772/intechopen.76798. Available from: https://www.intechopen.com/books/emerging-waveguide-technology/lithium-niobate-optical-waveguides-and-microwaveguides
Della Corte, F.G., Cocorullo, G., Iodice, M., Rendina, I.: Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm. Appl. Phys. Lett. 77, 1614–1616 (2000)
Diziain, S., Geiss, R., Steinert, M., Schmidt, C., Chang, W., Fasold, S., Fußel, D., Chen, Y., Pertsch, T.: Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes. Opt. Mater. Express 5(9):2081–2089 (2015)
Djordjev, K.: Active microdisk resonant devices and semiconductor optical equalizers as building blocks for future photonic circuitry. Ph.D. thesis, University of Southern California (2002)
Djordjev, K., Choi, S.J., Choi, S.J., Dapkus, P.D.: Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches. Appl. Phys. Lett. 80, 3467–3469 (2002a)
Djordjev, K., Choi, S.J., Choi, S.J., Dapkus, P.D.: High-Q vertical-ly coupled InP microdisk resonators. IEEE Photonics Technol. Lett. 14, 331–333 (2002b)
Dumon, P., Bogaerts, W., Wiaux, V., Wouters, J., Beckx, S., Van Campenhout, J., Taillaert, D., Luyssaert, B., Bienstman, P., Van Thourhout, D., Baets, R.: Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol. Lett. 16, 1328–1330 (2004)
Feuchter, T., Thirstrup, C.: High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity. IEEE Photonics Technol. Lett. 6, 1244–1247 (1994)
Fiedler, F., Schlachetzki, A.: Optical parameters of InP-based waveguides. Solid-State Electron. 30, 73–83 (1987)
Geiss, R., Diziain, S., Iliew, R., et al.: Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett. 97, 131109–11 (2010)
Georgakilas, A., Deligeorgis, G., Aperathitis, E., Cengher, D., Hatzopoulos, Z., Alexe, M., Dragoi, V., Gösele, U., Kyriakis-Bitzaros, E.D., Minoglou, K., Halkias, G.: Wafer-scale integration of GaAs optoelectronic devices with standard Si integrated circuits using a low-temperature bonding procedure. Appl. Phys. Lett. 81, 5099–5101 (2002)
Gerthoffer, A., Guyot, C., Qui, W., Ndao, A., Bernal, M.P., Courjal, N.: Strong reduction of propagation losses in LiNbO3 ridge waveguides. Opt. Mater. 38(4), 37–41 (2014)
Gottesman, Y., Rao, E.V.K., Rabus, D.G.: New methodology to evaluate the performance of ring resonators using optical low-coherence reflectometry. IEEE J. Lightwave Technol. 6, 1566–1572 (2004)
Griffel, G., Abeles, J.H., Menna, R.J., Braun, A.M., Connolly, J.C., King, M.: Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching. IEEE Photonics Technol. Lett. 12, 146–148 (2000)
Grover, R.: Indium phosphide based optical micro-ring resonators. Ph.D. thesis, University of Maryland, College Park (2003)
Grover, R., Absil, P.P., Van, V., Hryniewicz, J.V., Little, B.E., King, O., Johnson, F.G., Calhoun, L.C., Ho, P.T.: Vertically coupled GaAs-AlGaAs and GaInAsP-InP microring resonators. In: Proceedings of OFC Paper WK2–1 (2001c)
Grover, R., Ibrahim, T.A., Ding, T.N., Leng, Y., Kuo, L.C., Kanakaraju, S., Amarnath, K., Calhoun, L.C., Ho, P.T.: Laterally coupled InP-based single-mode microracetrack notch filter. IEEE Photonics Technol. Lett. 15, 1082–1084 (2003)
Grover, R., Hryniewicz, J.V., King, O.S., Van, V.: Process development of methane-hydrogen-argon-based deep dry etching of InP for high aspect-ratio structures with vertical facet-quality sidewalls. J. Vac. Sci. Technol., B 19, 1694–1698 (2001a)
Grover, R., Absil, P.P., Van, V., Hryniewicz, J., Little, B.E., King, O., Calhoun, L.C., Johnson, F.G., Ho, P.T.: Vertically coupled GaInAsP-InP microring resonators. Opt. Lett. 26, 506–508 (2001b)
Guarino, A., Poberaj, G., Rezzonico, D., Degli’Innocenti, R., Gunter, P.: Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 1, 407–410 (2007)
Haavisto, J., Pajer, G.A.: Resonance effects in low-loss ring waveguides. Opt. Lett. 5, 510–512 (1980)
Hakki, B.W., Paoli, T.L.: Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46, 1299–1306 (1975)
Hamacher, M., Kaiser, R., Heidrich, H., Albrecht, P., Borchert, B., Janiak, K., Löffler, R., Malchow, S., Rehbein, W., Schroeter-Janßen, H.: Monolithic integration of lasers, photodiodes, waveguides and spot size converters on GaInAsP/InP for photonic IC applications. In: Proceedings of IPRM, pp. 21–24 (2000)
Hartung, H., Kley, E.B., Tünnermann, A., Gischkat, T., Schrempel, F., Wesch, W.: Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. Opt. Lett. 33, 2320–2322 (2008)
Haruna, M., Segawa, Y., Nishihara, H.: Nondestructive and simple method of optical-waveguide loss measurement with optimization of end-fire coupling. Electron. Lett. 28, 1612–1613 (1992)
Hatakeyama, Y., Hanai, T., Suzuki, S., Kokubun, Y.: Loss-Less multilevel crossing of busline waveguide in vertically coupled microring resonator filter. IEEE Photonics Technol. Lett. 16, 473–475 (2004)
Headley, W.R., Reed, G.T., Howe, S., Liu, A., Paniccia, M.: Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl. Phys. Lett. 85, 5523–5525 (2004)
Hida, Y., Imamura, S., Izawa, T.: Ring resonator composed of low loss polymer waveguides at 1.3 μm. Electron. Lett. 28, 1314–1316 (1992)
Horst, F., Salemink, H.W.M., Germann, R., Offrein, B.J., Bona, G.L.: High quality ring resonators in high refractive index contrast SiON waveguides. In: Proceedings of 1998 IEEE/LEOS Symposium, Benelux Chapter, pp. 33–36 (1998)
Hu, H., Ricken, R., Sohler, W., Wehrspohn, R.B.: Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technol. Lett. 19(6), 417–419 (2007)
Hu, H., Ricken, R., Sohler, W.: Lithium niobate photonic wires. Opt. Express 17, 24261–24268 (2009)
Huang, Y., Paloczi, G.T., Scheuer, J., Yariv, A.: Soft lithography replication of polymeric microring optical resonators. Opt. Express 11, 2452–2458 (2003)
Huang, Y., Paloczi, G.T., Poon, J.K.S., Yariv, A.: Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices. Adv. Mater. 16, 44–48 (2004)
Janner, D., Tulli, D., García-Granda, M., Belmonte, M., Pruneri, V.: Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 3(3), 301–13 (2009)
Jin, S., Xu, L., Zhang H., Li, Y.: LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett. 28(7), 736–739 (2016)
Jung, H., Fong, K.Y., Xiong, C., Tang, H.X.: Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014)
Kaiser, R., Heidrich, H.: Optoelectronic/Photonic integrated circuits on InP between technological feasibility and commercial success. IEICE Trans. Electron. E85-C, 970–981 (2002)
Kaiser, R., Trommer, D., Heidrich, H., Fidorra, F., Hamacher, M.: Heterodyne receiver Pies as the first monolithically integrated tunable receivers for OFDM system applications. Opt. Quant. Electron. 28, 565–573 (1996)
Keil, N., Yao, H.H., Zawadzki, C., Bauer, J., Bauer, M., Dreyer, C., Schneider, J.: Athermal all-polymer arrayed-waveguide grating multiplexer. Electron. Lett. 37, 579–580 (2001)
Kim, M.J., Carpenter, R.W.: Heterogeneous silicon integration by ultra-high vacuum wafer bonding. J. Electron. Mater. 32, 849–854 (2003)
Kim, D.H., Im, J.G., Lee, S.S., Ahn, S.W., Lee, K.D.: Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer. IEEE Photonics Technol. Lett. 17, 2352–2354 (2005a)
Kim, D.G., Shin, J.H., Ozturk, C., Yi, J.C., Chung, Y., Dagli, N.: Total internal reflection mirror-based InGaAsP ring resonators integrated with optical amplifiers. IEEE Photonics Technol. Lett. 17, 1899–1901 (2005b)
Kiyat, I., Aydinli, A., Dagli, N.: Polarization characteristics of compact SOI rib waveguide racetrack resonators. IEEE Photonics Technol. Lett. 17, 2098–2100 (2005)
Klunder, D.J.W., Tan, F.S., van der Veen, T., Bulthuis, H.F., Sengo, G., Docter, B., Hoekstra, H.J.W.M., Driessen, A.: Experimental and numerical study of SiON microresonators with air and polymer cladding. IEEE J. Lightwave Technol. 21, 1099–1110 (2003)
Klunder, D.J.W., Roeloffzen, C.G.H., Driessen, A.: A novel polarization-independent wavelength-division-multiplexing filter based on cylindrical microresonators. IEEE J. Sel. Top. Quantum Electron. 8, 1294–1299 (2002)
Klunder, D.J.W., Krioukov, E., Tan, F.S., Van der Veen, T., Bulthuis, H.F., Sengo, G., Otto, C., Hoekstra, H.J.W.M., Driessen, A.: Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology. Appl. Phys. B LasersOpt. 73, 603–608 (2001)
Koechlin, M.: Electro-optical microresonators in ion-sliced lithium niobate. PhD thesis ETH Zurich Koechlin, M., Poberaj, G., Günter, Rev. Sci. Instrum. 80, 085105-1–5 (2009)
Koechlin, M., Poberaj, G., Günter, P.: Rev. Sci. Instrum. 80, 085105-1–5 (2009)
Koechlin, M., Sulser, F., Sitar, Z., Poberaj, G., Gunter, P.: Free-standing lithium niobate microring resonators for hybrid integrated optics. IEEE Photonics Technol. Lett. 22(4): 251–253 (2010)
Kokubun, Y., Funato, N., Takizawa, M.: Athermal waveguides for temperature-independent lightwave devices. IEEE Photonics Technol. Lett. 5, 1297–1300 (1993)
Kokubun, Y., Yoneda, S., Tanaka, H.: Temperature-independent narrow-band optical filter by an athermal waveguide. IEICE Trans. Electron. E80-C, 632–639 (1997)
Kokubun, Y., Kubota, S., Chu, S.T.: Polarization-independent vertically coupled microring resonator filter. Electron. Lett. 37, 90–92 (2001)
Kokubun, Y., Hatakeyama, Y., Ogata, M., Suzuki, S., Zaizen, N.: Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius. J. Sel. Top. Quantum Electron. 11, 4–10 (2005)
Koonath, P., Kishima, K., Indukuri, T., Jalali, B.: Sculpting of three-dimensional nano-optical structures in silicon. Appl. Phys. Lett. 83, 4909–4911 (2003)
Koonath, P., Indukuri, T., Jalali, B.: Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon. Appl. Phys. Lett. 85, 1018–1020 (2004)
Koonath, P., Indukuri, T., Jalalib, B.: Add-drop filters utilizing vertically coupled microdisk resonators in silicon. Appl. Phys. Lett. 86, 091102 (2005)
Korkishko, Y., Fedorov, V.A.: Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics. (Cambridge International Science Publishing, Cambridge), pp. 97–261 (1999)
Krasnokutska, J.L., Tambasco, J., Peruzzo, A.: Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 9, 11086 (2019)
Langrock, C., Roussev, R.V., Nava, G., Minzioni, P., Argiolas, N., Sada, C., Fejer, M.M.: Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate. Appl. Opt. 55(24), 6559–6563 (2016)
Lansiaux, X., Dogheche, E., Remiens, D., Guilloux-viry, M., Perrin, A., Ruterana, P.: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)
Lawrence, M.: Lithium niobate integrated optics. Rep. Prog. Phys. 56, 363–429 (1993)
Leinse, A.: Polymeric microring resonator based electro optic modulator. Ph.D. thesis, University of Twente (2005). ISBN 90-365-2168-8
Leinse, L., Diemeer, M.B.J., Rousseau, A., Driessen, A.: Novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI. IEEE Photonics Technol. Lett. 17(10), 2074–2076 (2005)
Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill, G.S., III., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998)
Levy, M., Radojevic, A.M.: Wafer Bonding: Applications and Technology. In: Alexe, M., Gosele, U. (eds.) Springer Series in Material Sciences (Springer, Berlin, Heidelberg), pp. 417–450 (2004)
Li, X.: All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep. 7(1), 1–7 (2017)
Little, B.E., Chu, S.T., Absil, P.P., Hryniewicz, J.V., Johnson, F.G., Seiferth, F., Gill, D., Van, V., King, O., Trakalo, M.: Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol. Lett. 16, 2263–2265 (2004)
Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W.: Ultra-compact Si–SiO microring resonator optical channel dropping filters. IEEE Photonics Technol. Lett. 10, 549–551 (1998)
Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., Ippen, E.: Vertically coupled glass microring resonator channel dropping filters. IEEE Photonics Technol. Lett. 11, 215–217 (1999)
Majkic, A., Poberaj, G., Günter, P.: Optical microring resonators in fluorine-implanted lithium niobate for electrooptical switching and filtering. IEEE Photonics Technol. Lett. 21(10), 639–641 (2009)
Ma, Y., Chang, G., Park, S., Wang, L., Ho, S.T.: InGaAsP thin-film microdisk resonators fabricated by polymer wafer bonding for wavelength add-drop filters. IEEE Photonics Technol. Lett. 12, 1495–1497 (2000)
Ma, H., Jen, A.K.Y., Dalton, L.R.: Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339–1365 (2002)
Mahapatra, M., Robinson, W.C.: Integrated-optic ring resonators made by proton exchange in lithium niobate. Appl. Opt. 24, 2285–2286 (1985)
Melloni, A., Costa, R., Monguzzi, P., Martinelli, M.: Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)
Menon, V.M., Tong, W., Forrest, S.R.: Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 16, 1343–1345 (2004)
Morichetti, F., Melloni, A.: Polarization converters based on ring resonator phase shifters. IEEE Photonics Technol. Lett. 18, 923–925 (2006)
Naden, J.M, Weiss, B.L.: Ion-implanted integrated optical waveguides in lithium niobate. Radio and Electronic Engineer 54(5), 227–230 (1984)
Niehusmann, J., Vrckel, A., Bolivar, P.A., Wahlbrink, T., Kurz, H.: Ul-trahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29(24), 2861–2863 (2004)
Pagano, P.L., Presti, D., Peyton, R.R., Videla, F.A., Torchia, G.A.: Design conditions in the middle range for implementation of integrated ring resonators in LiNbO3 by direct laser writing. IET Optoelectro. 14(3), 104–108 (2020)
Paloczi, G.T., Huang, Y., Yariv, A.: Free-standing all-polymer microring resonator optical filter. Electron. Lett. 39, 1650–1651 (2003)
Park, K.H., Kim, M.W., Byun, Y.T., Woo, D., Kim, S.H., Choi, S.S., Chung, Y., Cho, W.R., Park, S.H., Kim, U.: Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides. J. Appl. Phys. 78, 6318–6320 (1995)
Poberaj, G., Koechlin, M., Sulser, F., Guarino, A., Hajfler, J., Günter, P.: Ion-sliced lithium niobate thin films for active photonic devices. Opt. Mater. 31, 1054–1058 (2009)
Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)
Poon, J.K.S., Huang, Y., Paloczi, G.T., Yariv, A.: Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photonics Technol. Lett. 16, 2496–2498 (2004)
Quidant, R., Weeber, J.C., Dereux, A., Leveque, G., Weiner, J., Girard, C.: Addressing and imaging microring resonators with optical evanescent light. Phys. Rev. B 69, 081402(R) (2004)
Rabiei, P., Steier, W.H., Zhang, C., Dalton, L.R.: Polymer Micro-ring filters and modulators. IEEE J. Lightwave Technol. 20, 1968–1975 (2002)
Rabiei, P., Ma, J., Khan, S., Chiles, J., Fathpour, S.: Heterogeneous lithium niobate photonics on silicon substrates. Opt Express 21, 25573–25581 (2013)
Rabus, D.G.: Realization of Optical Filters using Ring Resonators with Integrated Semiconductor Optical Amplifiers in GaInAsP/InP. Der Andere Verlag (2002)
Rabus, D.G., Hamacher, M.: MMI-coupled ring resonators in GaInAsP-InP. IEEE Photonics Technol. Lett. 8, 812–814 (2001)
Rabus, D.G., Hamacher, M., Heidrich, H., Troppenz, U.: High Q channel dropping filters using ring resonators with integrated SOAs. IEEE Photonics Technol. Lett. 10, 1442–1444 (2002)
Radojevic, A.M., Levy, M., Osgood Jr, R.M.: Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3LiNbO3 films. Appl. Phys. Lett. 74, 3197–3200 (1999)
Rafizadeh, R., Zhang, J.P., Hagness, S.C., Taflove, A., Stair, K.A., Ho, S.T., Tiberio, R.C.: Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spec-tral range. Opt. Lett. 22, 1244–1246 (1997)
Rambu, A.P., Apetrei, A.M., Doutre, F., Tronche, H., de Micheli, M., Tascu, S.: Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. J. Lightwave Technol. 36(13), 2675–2684 (2018)
Rao, A., Patil, A., Chiles, J., Malinowski, M., et al.: Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 23(17), 22746 (2015)
Regener, R., Sohler, W.: Loss in low finesse Ti:LiNbO3 optical waveguide resonators. Appl. Phys. B 36, 143–147 (1985)
Rezzonico, D., Guarino, A., Herzog, C., Jazbinsek, M., Gunter, P.: High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics. IEEE Photonics Technol. Lett. 18, 865–867 (2006)
Rommel, S.L., Jang, J.H., Lu, W., Cueva, G., Zhou, L., Adesida, I., Pajer, G., Whaley, R., Lepore, A., Schellanbarger, Z., Abeles, J.H.: Effect of H2 on the etch profile of InP/InGaAsP alloys in Cl2/Ar/H2 induc-tively coupled plasma reactive ion etching chemistriesfor photonic device fabrication. J. Vac. Sci. Technol. B 20, 1327–1330 (2002)
Sakamoto, S.R., Ozturk, C., Byun, Y.T., Ko, J., Dagli, N.: Low-loss substrate-removed (SURE) optical waveguides in GaAs–AlGaAs epitaxial layers embedded in organic polymers. IEEE Photonics Technol. Lett. 10, 985–987 (1998)
Sakashita, Y., Segawa, H.J.: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77, 5995–5999 (1995)
Saulys, D., Joshkin, V., Khoudiakov, M., Kuech, T.K., Ellis, A.B., Oktyabrsky, S.R., McCaughan, L.: An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions. J. Cryst. Growth 217, 287–301 (2000)
Shnneidman, A., Becker, K., Lukas M., et al.: All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics 5 (2018). https://doi.org/10.1021/acsphotonics.8b00022
Siew Shawn, Y., Saha, S.S., Tsang, M., Danner, A.J.: Rib microring resonators in lithium niobate on insulator. IEEE Photonics Technol. Lett. 28(5), 573–576 (2016)
Solmaz, M.E., Adams, D.B., Tan, W.C., Snider, W.T., Madsen, C.K.: Vertically integrated As2S3 ring resonator on LiNbO3. Opt. Lett. 34(11), 1735 (2009)
Song, J.H., Park, J.W., Sim, E.D., Baek, Y.: Measurements of coupling and reflection characteristics of butt-joints in passive waveguide integrated laser diodes. IEEE Photonics Technol. Lett. 17, 1791–1793 (2005)
Sulser, F., Poberaj, K.M., Günter, P.: Photonic crystal structures in ion-sliced lithium niobate thin films. Opt. Express 17(22), 20291–20300 (2009)
Suzuki, S., Shuto, K., Hibino, Y.: Integrated-optic ring resonators with two stacked layers of silica waveguide on Si. IEEE Photonics Technol. Lett. 4, 1256–1258 (1992)
Suzuki, S., Yanagisawa, M., Hibino, Y., Oda, K.: High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference. IEEE J. Lightwave Technol. 12, 790–796 (1994)
Takigawa, R., Asano, T.: Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer. Opt. Express 26(19), 24413–24421 (2018)
Tazawa, H., Kuo, Y.H., Dunayevskiy, L.I.J.D., Jen, A.K.Y., Fetterman, H.R., Steier, W.H.: Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol. 24(9), 3514–3519 (2006)
Tee, C.W., Williams, K.A., Penty, R.V., White, I.H.: Fabrication-tolerant active–passive integration scheme for vertically coupled microring resonator. IEEE J. Sel. Top. Quantum Electron. 12, 108–116 (2006)
Teng, J., Scheerlinck, S., Zhang, H., Jian, X., et al.: A PSQ-L polymer microring resonator fabricated by a simple UV-based soft-lithography process. IEEE Photonics Technol. Lett. 21(18), 1323–1325 (2009)
Tishinin, D.V., Dapkus, P.D., Bond, A.E., Kim, I., Lin, C.K., O’Brien, J.: Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding. IEEE Photonics Technol. Lett. 11, 1003–1005 (1999)
Tsou, D.H., Chou, M.H., Santhanaraghavan, P., Chen, Y.H., Huang, Y.C.: Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides. Mat. Chem. Phys. 78, 474–479 (2002)
van Dam, C., Spiekman, L.H., van Ham, F.P.G.M., Groen, F.H., van der Tol, J.J.G.M., Moerman, I., Pascher, W.W., Hamacher, M., Heidrich, H., Weinert, C.M., Smit, M.K.: Novel compact polarization converters based on ultra short bends. IEEE Photonics Technol. Lett. 8, 1346–1348 (1996)
Vander Rhodes, G.H., Goldberg, B.B., Ünlü, M.S., Chu, S.T., Little, B.E.: Internal spatial modes in glass microring resonators. IEEE J. Sel. Top. Quantum Electron. 6, 46–53 (2000)
Vanderhaegen, B., Van Thourhout, D., De Merlier, J., Sarlet, G., Vanwassenhove, L., Moerman, I., Van Daele, P., Baets, R.: High Q InGaAsP ring resonator filters. In: Proceedings of the 9th European Conference on Integrated Optics and Technical Exhibition (ECIO 99), Italy, pp. 381–384 (1999)
Van, V., Little, B.E., Chu, S.T., Hryniewicz, J.V.: Micro ring resonator filters. In: Proceedings of LEOS Annual Meeting, vol. 2, pp. 571–572 (2004)
Vörckel, A., Mönster, M., Henschel, W., Bolivar, P.H., Kurz, H.: Asymmetrically coupled silicon-on-insulator microring resonators for compact add–drop multiplexers. IEEE Photonics Technol. Lett. 15, 921–923 (2003)
Wang, T.J., Huang, Y.H., Chen, H.L.: Resonant-wavelength tuning of microring filters by oxygen plasma treatment. IEEE Photonics Technol. Lett. 17, 582–584 (2005)
Wang, T., Ma, Z., Hung, W.K.: Integrated-optic wavelength demultiplexer on lithium niobate by double proton exchange. Opt. Eng. 46(2), 024601–024605 (2007)
Wang, L.H., Ren, J., Han, X.Y., Claes, T., Jian, X.G., Bienstman, P., Baets, R., Zhao, M.S., Morthier, G.: A label-free optical biosensor built on a low cost polymer platform. IEEE Photonics J. 4, 920–930 (2012)
Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Loncar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–4 (2018a)
Wang, C., Zhang, M., Stern, B., Lipson, M., Lončar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–55 (2018b)
Watts, M.R., Qi, M., Barwicz, T., Popovic, M., Rakich, P., Socci, L., Ippen, E.P., Kaertner, F., Smith, H.I. (2005) Towards polarization independent high-index contrast microphotonics. In: Proceedings of XXVIIIth URSI General Assembly
Wooten, L., Kissa, K.M., Yi-Yan, A., Murphy, E., Lafaw, D., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., Bossi, D.E.: A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)
Wu, R., Wang, M., Xu, J., Qi, J., Chu, W., Fang, Z., Zhang, J., Zhou, J., Qiao, L., Chai, Z., Lin, J., Cheng, Y.: Low-loss Lithium Niobate on Insulator (LNOI) Waveguides of a 10 cm-length and a Subnanometer Surface Roughness. Nanomaterials (Basel) 8(11), 910–919 (2018)
Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)
Xu, Q.F., Schmidt, B., Shakya, J., Lipson, M.: Cascaded silicon micro-ring modulators for WDM optical interconnections. Opt. Express 14(20), 9430–9435 (2006)
Yao, Y., Wang, W., Zhang, B.: Designing MMI structured beam-splitter in LiNbO3 crystal based on a combination of ion implantation and femtosecond laser ablation. Opt. Express 26(15), 19648–19656 (2018)
Yoon, J.G., Kim, K.: Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. App. Phys. Lett. 68, 2523–2525 (1996)
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, S., Lončar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017)
Zhang, D.L., Kang, J., Zhang, Q., Du, W.J., Wong, W.H., Pun, E.Y.B.: Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics. Opt. Mater. Express 5(8), 1715–1721 (2015)
Zhang, D., Men, L., Chen, Q.: Tuning the performance of polymeric microring resonator with femtosecond laser. Opt. Commun. 125571 (2020)
Zhou, L.J., Poon, W.: Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators. Opt. Express 14(15), 6851–6857 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rabus, D.G., Sada, C. (2020). Materials, Fabrication and Characterization Methods. In: Integrated Ring Resonators. Springer Series in Optical Sciences, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-60131-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-60131-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60130-0
Online ISBN: 978-3-030-60131-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)