Abstract
One of the first papers to deal about the simulation of an integrated ring resonator for a bandpass filter has been published in 1969 by E. A. Marcatili. This can be regarded as the standard configuration for an integrated ring resonator channel dropping filter. Two straight waveguides also known as the bus or the port waveguides are coupled either by directional couplers through the evanescent field or by multimode interference couplers to the ring resonator. A simpler configuration is obtained, when the second bus or port waveguide is removed. Then the filter is typically referred to as “notch” filter because of the unique filter characteristic. In the following chapter, the ring resonator simulation model is described beginning with the basic notch configuration and adding more bus waveguides and ring resonators to eventually build a multiple coupled ring resonator filter. Different types of ring resonator simulation models will be explained, so as to be able to chose from a range of models which best suit the need.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Butterworth, S.: On the theory of filter amplifiers. Exp. Wirel. Radio Eng. 7, 536–541 (1930)
Caruso, L., Montrosset, I.: Analysis of a racetrack microring resonator with MMI coupler. IEEE J. Lightwave Technol. 21, 206–210 (2003)
Chen, W., Chen, W., Chen, Y.J.: A characteristic matrix approach for analyzing resonant ring lattice devices. IEEE Photonics Technol. Lett. 16, 458–460 (2004)
Chin, M.K., Ho, S.T.: Design and modeling of waveguide-coupled single-mode microring resonators. IEEE J. Lightwave Technol. 16, 1433–1446 (1998)
Chremmos, I., Uzunoglu, N.: Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photonics Technol. 17, 2110–2112 (2005)
Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Kokubun, Y.: Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add–drop filters. IEEE Photonics Technol. Lett. 11, 1423–1425 (1999)
Emelett, S.J., Soref, R.: Design and simulation of silicon microring optical routing switches. IEEE J. Lightwave Technol. 23, 1800–1807 (2005)
Griffel, G.: Vernier effect in asymmetrical ring resonator arrays. IEEE Photonics Technol. Lett. 12, 1642–1644 (2000)
Grover, R., Van, V., Ibrahim, T.A., Absil, P.P., Calhoun, L.C., Johnson, F.G., Hryniewicz, J.V., Ho, P.T.: Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. IEEE J. Lightwave Technol. 20, 900–905 (2002)
Heebner, J.E., Boyd, R.W., Park, Q.H.: SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides. J. Opt. Soc. Am. B 19, 722–731 (2002)
Hidayat, I.S., Toyota, Y., Torigoe, O., Wada, O., Koga, R.: Multipath structure for FSR expansion in waveguide-based optical ring resonator. Electron. Lett. 39 (2003)
Hunsperger, R.G.: Losses in optical waveguides integrated optics. Advanced Texts in Physics, pp. 93–111. Springer, Berlin, Heidelberg (2002)
Kaalund, C.J., Peng, G.D.: Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications. IEEE J. Lightwave Technol. 22, 1548–1559 (2004)
Lee, H.S., Choi, C.H., Beom-hoan, O., Park, D.G., Kang, B.G., Kim, S.H., Lee, S.G., Lee, E.H.: A nonunitary transfer matrix method for practical analysis of racetrack microresonator waveguide. IEEE Photonics Technol. Lett. 16, 1086–1088 (2004)
Little, B.E., Chu, S.T., Hryniewicz, J.V., Absil, P.P.: Filter synthesis for periodically coupled microring resonators. Opt. Lett. 25, 344–346 (2000)
Little, B.E., Chu, S.T.: Theory of loss and gain trimming of resonator-type filters. IEEE Photonics Technol. Lett. 12, 636–638 (2000)
Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997)
Little, B.E., Haus, H.A., Foresi, J.S., Kimerling, L.C., Ippen, E.P., Ripin, D.J.: Wavelength switching and routing using absorption and resonance. IEEE Photonics Technol. Lett. 10, 816–818 (1998)
Ma, C., Xu, Y., Yan, X., Qin, Z., Wang, X.: Effect of ring spacing on spectral response of parallel-cascaded microring resonator arrays. Opt. Quantum Electron. 37, 561–574 (2005)
Madsen, C.K., Zhao, J.H.: A general planar waveguide autoregressive optical filter. IEEE J. Lightwave Technol. 14, 437–447 (1996)
Madsen, C.K., Zhao, J.H.: Optical Filter Design and Analysis. Wiley, New York (1999)
Melloni, A.: Synthesis of a parallel-coupled ring-resonator filter. Opt. Lett. 26, 917–919 (2001)
Melloni, A., Martinelli, M.: Synthesis of direct-coupled-resonators bandpass filters for WDM systems. IEEE J. Lightwave Technol. 20, 296–303 (2002)
Michelotti, F., Driessen, A., Bertolotti, M. (eds.): Microresonators as building blocks for VLSI photonics. AIP Conference Proceedings, vol. 709. Melville, New York (2004)
Moslehi, B., Goodman, J.W., Tur, M., Shaw, H.J.: Fiber-optic lattice signal processing. Proc. IEEE 72, 909–930 (1984)
Okamoto, H., Haraguchi, M., Fukui, M., Okamoto, T.: Optical filtering by microring resonators. Jpn. J. Appl. Phys. 42, 2692–2698 (2003)
Orta, R., Savi, P., Tascone, R., Trinchero, D.: Synthesis of multiple-ring -resonator filters for optical systems. IEEE Photonics Technol. Lett. 7, 1447–1449 (1995)
Pereira, S., Sipe, J.E., Heebner, J.E., Boyd, R.W.: Gap solitons in a two-channel microresonator structure. Opt. Lett. 27, 536–538 (2002)
Poon, J.K.S., Huang, Y., Paloczi, G.T., Yariv, A.: Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photonics Technology Letters 16, 2496–2498 (2004a)
Poon, J.K.S., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., Yariv, A.: Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express 12, 90–103 (2004b)
Poon, J.K.S., Scheuer, J., Xu, Y., Yariv, A.: Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004c)
Poon, J.K.S., Scheuer, J., Yariv, A.: Wavelength-selective reflector based on a circular array of coupled microring resonators. IEEE Photonics Technol. Lett. 16, 1331–1333 (2004d)
Rabiei, P.: Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications. IEEE J. Lightwave Technol. 23, 1295–1301 (2005)
Rabus, D.G.: Realization of Optical Filters Using Ring Resonators with Integrated Semiconductor Optical Amplifiers in GaInAsP/InP. Der Andere Verlag (2002)
Sacher, W.L., Poon, J.K.S.: Dynamics of microring resonator modulators. Opt. Express 16(20), 15741–15753 (2008)
Schwelb, O., Frigyes, I.: All-optical tunable filters built with discontinuity-assisted ring resonators. IEEE J. Lightwave Technol. 19, 380–386 (2001)
Sorel, M., Gluck, S., Laybourn, P.J.R.: Semiconductor double ring waveguide resonators. Electron. Lett. 35, 1551–1552 (1999)
Sumetsky, M.: Vertically-stacked multi-ring resonator. Opt. Express 13, 6354–6375 (2005)
Suzuki, S., Oda, K., Hibino, Y.: Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz. IEEE J. Lightwave Technol. 13, 1766–1771 (1995)
Weiershausen, W., Zengerle, R.: Photonic highway switches based on ring resonators used as frequency-selective components. Appl. Opt. 35, 5967–5978 (1996)
Yariv, A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000)
Yariv, A.: Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483–485 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rabus, D.G., Sada, C. (2020). Ring Resonators: Theory and Modeling. In: Integrated Ring Resonators. Springer Series in Optical Sciences, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-60131-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-60131-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60130-0
Online ISBN: 978-3-030-60131-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)