Skip to main content

Single-Actuator Simultaneous Haptic Rendering for Multiple Vital Signs

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12424)

Abstract

Haptic displays have been investigated as a possible way to reduce the effects of alarm fatigue in clinical environments. Previous displays have employed multiple vibrotactile actuators, using the spatial dimension to aid in conveying information of a number of vital signs. However, inspired by prior work investigating multidimensional tactons, we wished to examine the effectiveness of a single actuator to communicate information regarding multiple vital signs simultaneously. The results of our evaluation suggest that this is not only feasible, but that with a carefully designed encoding strategy, we may be able obtain perception performance comparable to that achievable with multi-actuator displays.

Keywords

  • Single actuator
  • Haptic chord
  • Simultaneous signals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-60117-1_19
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-60117-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Alirezaee, P., Weill-Duflos, A., Schlesinger, J., Cooperstock, J.R.: Exploring the effectiveness of haptic alarm displays for critical care environments. In: Haptics Symposium. IEEE, Washington, D.C., March 2020

    Google Scholar 

  2. Berglund, B., Lindvall, T., Schwela, D.H.: Guidelines for Community Noise. Whurr, London (1999)

    Google Scholar 

  3. Brewster, S., Brown, L.M.: Tactons: structured tactile messages for non-visual information display. In: Proceedings of the Fifth Conference on Australasian User Interface, vol. 28, pp. 15–23. AUIC 2004, Australian Computer Society Inc, AUS (2004)

    Google Scholar 

  4. Brown, L.M., Brewster, S.A., Purchase, H.C.: Multidimensional Tactons for non-visual information presentation in mobile devices. In: Proceedings of the 8th Conference on Human-computer Interaction with Mobile Devices and Services. MobileHCI 2006, Helsinki, Finland, pp. 231–238. ACM, New York (2006). https://doi.org/10.1145/1152215.1152265

  5. Burdick, K.J., et al.: Using multisensory haptic integration to improve monitoring in the intensive care unit. Auditory Percept. Cogn. 2(4), 1–19 (2020). https://doi.org/10.1080/25742442.2020.1773194

  6. Cvach, M.: Monitor alarm fatigue: an integrative review. Biomed. Instrum.Technol. 46(4), 268–277 (2012). https://doi.org/10.2345/0899-8205-46.4.268

    CrossRef  Google Scholar 

  7. Darbyshire, J.L., Young, J.D.: An investigation of sound levels on intensive care units with reference to the WHO guidelines. Crit. Care 17(5), R187 (2013). https://doi.org/10.1186/cc12870

    CrossRef  Google Scholar 

  8. Erp, V., Jan, B., Veltman, J., van Veen, H., Oving, A.: Tactile torso display as countermeasure to reduce night vision goggles induced drift. Technical report, Human Factors Research Institute, Soesterberg, Netherlands (2003)

    Google Scholar 

  9. Ferris, T.K., Sarter, N.: Continuously informing Vibrotactile displays in support of attention management and multitasking in Anesthesiology. Hum. Factors 53(6), 600–611 (2011). https://doi.org/10.1177/0018720811425043

    CrossRef  Google Scholar 

  10. Formby, C., Morgan, L.N., Forrest, T.G., Raney, J.J.: The role of frequency selectivity in measures of auditory and vibrotactile temporal resolution. J. Acoust. Soc. Am. 91(1), 293–305 (1992). https://doi.org/10.1121/1.402772

    CrossRef  Google Scholar 

  11. Franzén, O., Nordmark, J.: Vibrotactile frequency discrimination. Percept. Psychophys. 17(5), 480–484 (1975). https://doi.org/10.3758/BF03203298

    CrossRef  Google Scholar 

  12. Goldman, J.M., Robertson, F.A.: Pulse-OX Tone Conveys Vital Information. APSF Stresses Use of Audible Monitor Alarms, p. 20 (2004)

    Google Scholar 

  13. Gomes, K.M., Reeves, S.T., Riggs, S.L.: The evaluation of tactile parameters and display prototype to support physiological monitoring and multitasking for anesthesia providers in the operating room. IEEE Trans. Haptics, p. 1 (2019). https://doi.org/10.1109/TOH.2019.2960017

  14. Katzman, N., Gellert, M., Schlesinger, J.J., Oron-Gilad, T., Cooperstock, J.R., Bitan, Y.: Evaluation of tactile cues for simulated patients’ status under high and low workload. In: International Meeting. Human Factors and Ergonomics Society (HFES), October 2019. https://doi.org/10.1177/1071181319631285

  15. Ng, J., Man, J.: Vibro-monitor: a vibrotactile display for physiological data monitoring. In: Human Interface Technologies Conference (2004)

    Google Scholar 

  16. Otenio, M.H., Cremer, E., Claro, E.M.T.: Noise level in a 222 bed hospital in the 18th health region - PR. Revista Brasileira de Otorrinolaringologia 73(2), 245–250 (2007). https://doi.org/10.1590/S0034-72992007000200016

    CrossRef  Google Scholar 

  17. Sendelbach, S., Funk, M.: Alarm fatigue. AACN Adv. Crit. Care 24(4), 378–386 (2013). https://doi.org/10.4037/NCI.0b013e3182a903f9

    CrossRef  Google Scholar 

  18. Xie, H., Kang, J., Mills, G.H.: Clinical review: the impact of noise on patients’ sleep and the effectiveness of noise reduction strategies in intensive care units. Crit. Care 13(2), 208 (2009). https://doi.org/10.1186/cc7154

    CrossRef  Google Scholar 

  19. Yao, H.Y., Hayward, V.: Design and analysis of a recoil-type vibrotactile transducer. J. Acoust. Soc. Am. 128(2), 619–627 (2010). https://doi.org/10.1121/1.3458852

    CrossRef  Google Scholar 

  20. Yoo, Y., Hwang, I., Choi, S.: Consonance of Vibrotactile chords. IEEE Trans. Haptics 7(1), 3–13 (2014). https://doi.org/10.1109/TOH.2013.57

    CrossRef  Google Scholar 

Download references

Acknowledgment

We would like to thank Joseph J. Schlesinger and Parisa Alirezaee for their time and advice throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy R. Cooperstock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Regimbal, J., Radi, N., Weill–Duflos, A., Cooperstock, J.R. (2020). Single-Actuator Simultaneous Haptic Rendering for Multiple Vital Signs. In: Stephanidis, C., Kurosu, M., Degen, H., Reinerman-Jones, L. (eds) HCI International 2020 - Late Breaking Papers: Multimodality and Intelligence. HCII 2020. Lecture Notes in Computer Science(), vol 12424. Springer, Cham. https://doi.org/10.1007/978-3-030-60117-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60117-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60116-4

  • Online ISBN: 978-3-030-60117-1

  • eBook Packages: Computer ScienceComputer Science (R0)