Skip to main content

Linear Operators Associated with Differential and Difference Systems: What Is Different?

  • 281 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 341)

Abstract

The existence of a densely defined operator associated with (time-reversed) discrete symplectic systems is discussed and the necessity of the development of the spectral theory for these systems by using linear relations instead of operators is shown. An explanation of this phenomenon is provided by using the time scale calculus. In addition, the density of the domain of the maximal linear relation associated with the system is also investigated.

Keywords

  • Discrete symplectic system
  • Linear hamiltonian differential system
  • Linear relations
  • Multi-valuedness
  • Densely defined operator
  • Time scale

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlbrandt, C.D., Peterson, A.C.: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Texts in the Mathematical Sciences, vol. 16. Kluwer Academic Publishers Group, Dordrecht (1996). ISBN 0-7923-4277-1

    Google Scholar 

  2. Arens, R.: Operational calculus of linear relations. Pacific J. Math. 11, 9–23 (1961)

    CrossRef  MathSciNet  Google Scholar 

  3. Asahi, T.: Spectral theory of the difference equations. Progr. Theoret. Phys. 36, 55–96 (1966)

    CrossRef  MathSciNet  Google Scholar 

  4. Asahi, T., Kashiwamura, S.: Spectral theory of the difference equations in isotopically disordered harmonic chains. Progr. Theoret. Phys. 48, 361–371 (1972)

    CrossRef  MathSciNet  Google Scholar 

  5. Atkinson, F.V.: Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, vol. 8. Academic Press, New York (1964)

    Google Scholar 

  6. Bender, C.M., Mead, L.R., Milton, K.A.: Discrete time quantum mechanics. Comput. Math. Appl. 28(10–12), 279–317 (1994)

    CrossRef  MathSciNet  Google Scholar 

  7. Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27(3), 707–743 (1997)

    CrossRef  MathSciNet  Google Scholar 

  8. Bohner, M., Peterson, A.C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser Verlag, Boston (2001). ISBN 0-8176-4225-0

    Google Scholar 

  9. Brown, B.M., Christiansen, J.S.: On the Krein and Friedrichs extensions of a positive Jacobi operator. Expo. Math. 23(2), 179–186 (2005)

    CrossRef  MathSciNet  Google Scholar 

  10. Bruce, S.: Discrete time in quantum mechanics. Phys. Rev. A (3) 64(1), 014103, 4 pp. (electronic) (2001)

    Google Scholar 

  11. Clark, S.L., Gesztesy, F., Zinchenko, M.: Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients. Oper. Matrices 1(4), 535–592 (2007)

    CrossRef  MathSciNet  Google Scholar 

  12. Clark, S.L., Zemánek, P.: On discrete symplectic systems: associated maximal and minimal linear relations and nonhomogeneous problems. J. Math. Anal. Appl. 421(1), 779–805 (2015)

    CrossRef  MathSciNet  Google Scholar 

  13. Coddington, E.A.: Extension Theory of Formally Normal and Symmetric Subspaces, Memoirs of the American Mathematical Society, vol. 134. American Mathematical Society, Providence (1973)

    Google Scholar 

  14. Dobrev, V.K., Doebner, H.-D., Twarock, R.: Quantum mechanics with difference operators. Rep. Math. Phys. 50(3), 409–431 (2002)

    CrossRef  MathSciNet  Google Scholar 

  15. Gesztesy, F., Zinchenko, M.: Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory 139(1–2), 172–213 (2006)

    CrossRef  MathSciNet  Google Scholar 

  16. Gesztesy, F., Zinchenko, M.: Renormalized oscillation theory for Hamiltonian systems. Adv. Math. 311, 569–597 (2017)

    CrossRef  MathSciNet  Google Scholar 

  17. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten (in German, [Calculus on Measure Chains with Application to Central Manifolds]), Ph.D. dissertation, University of Würzburg, Würzburg (1988)

    Google Scholar 

  18. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)

    CrossRef  MathSciNet  Google Scholar 

  19. Hilger, S.: Differential and difference calculus–unified!, in “Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996)”. Nonlinear Anal. 30(5), 2683–2694 (1997)

    Google Scholar 

  20. Krall, A.M.: \(M(\lambda )\) theory for singular Hamiltonian systems with one singular point. SIAM J. Math. Anal. 20(3), 664–700 (1989)

    CrossRef  MathSciNet  Google Scholar 

  21. Malamud, M.M.: On a formula for the generalized resolvents of a non-densely defined Hermitian operator. Ukrainian Math. J. 44 (1993), no. 12, 1522–1547. Translated from: Ukraïn. Mat. Zh. 44 (1992), no. 12, 1658–1688 (Russian)

    Google Scholar 

  22. Ren, G.: On the density of the minimal subspaces generated by discrete linear Hamiltonian systems. Appl. Math. Lett. 27, 1–5 (2014)

    CrossRef  MathSciNet  Google Scholar 

  23. Shi, Y., Sun, H.: Self-adjoint extensions for second-order symmetric linear difference equations. Linear Algebra Appl. 434(4), 903–930 (2011)

    CrossRef  MathSciNet  Google Scholar 

  24. Šimon Hilscher, R., Zemánek, P.: Generalized Lagrange identity for discrete symplectic systems and applications in Weyl–Titchmarsh theory. In: “Theory and Applications of Difference Equations and Discrete Dynamical Systems”, Proceedings of the 19th International Conference on Difference Equations and Applications (Muscat, 2013), Z. AlSharawi, J. Cushing, and S. Elaydi (editors), Springer Proceedings in Mathematics & Statistics, Vol. 102, pp. 187–202, Springer, Berlin (2014)

    Google Scholar 

  25. Šimon Hilscher, R., Zemánek, P.: Limit point and limit circle classification for symplectic systems on time scales. Appl. Math. Comput. 233, 623–646 (2014)

    Google Scholar 

  26. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, vol. 72. American Mathematical Society, Providence (2000). ISBN 0-8218-1940-2

    Google Scholar 

  27. Teschl, G.: Mathematical Methods in Quantum Mechanics: With applications to Schrödinger operators, Graduate Studies in Mathematics, vol. 99. American Mathematical Society, Providence (2009). ISBN 978-0-8218-4660-5

    Google Scholar 

  28. von Neumann, J.: Mathematical Foundations of Quantum Mechanics, translated by Robert T. Princeton University Press, Princeton, Beyer (1955)

    Google Scholar 

  29. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

    Google Scholar 

  30. Zemánek, P.: Non-limit-circle and limit-point criteria for symplectic dynamic systems on time scales, submitted

    Google Scholar 

  31. Zemánek, P., Clark, S.L.: Characterization of self-adjoint extensions for discrete symplectic systems. J. Math. Anal. Appl. 440(1), 323–350 (2016)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the Czech Science Foundation under Grant GA16-00611S. The author is grateful to the anonymous referee for a detailed reading of the manuscript and her/his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Zemánek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zemánek, P. (2020). Linear Operators Associated with Differential and Difference Systems: What Is Different?. In: Baigent, S., Bohner, M., Elaydi, S. (eds) Progress on Difference Equations and Discrete Dynamical Systems. ICDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-030-60107-2_25

Download citation