Skip to main content

Uniqueness Criterion and Cramer’s Rule for Implicit Higher Order Linear Difference Equations Over \(\mathbf {Z}\)

  • Conference paper
  • First Online:
Progress on Difference Equations and Discrete Dynamical Systems (ICDEA 2019)

Abstract

We obtain uniqueness criterion for integer solutions of implicit higher order difference equations which extends the result of Berestovskii and Nikonorov. This criterion is specified for an implicit third order difference equation. We also obtain existence and uniqueness theorems for a solution of an implicit higher order nonhomogeneous difference equation over the ring of p-adic integers and over the ring \(\mathbf {Z}\). The possibility to obtain this solution by using the Cramer’s rule is established. We also give the explicit form for this solution. These results generalize corresponding results for implicit first and second order nonhomogeneous difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelley, W.G., Peterson, A.C.: Difference Equation: An Introduction with Applications, 2nd edn., p. 404. Academic Press (2001)

    Google Scholar 

  2. Gerasimov, V.A., Gefter, S.L., Goncharuk, A.B.: Application of the \(p\)-adic topology on \(\bf {Z}\) to the problem of finding solutions in integers of an implicit linear difference equation. J. Math. Sci. 235, 256–261 (2018). https://doi.org/10.1007/s10958-018-4072-x

  3. Fomin, S., Zelevinsky, A.: The laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002). https://doi.org/10.1006/aama.2001.0770

  4. Gefter, S.L., Goncharuk, A.B., Piven’, A.L.: Integer solutions for a vector implicit linear difference equation in \(\bf {Z}^N\). Dopov. Nac. Akad. Nauk Ukr. 11, 11–18 (in Ukrainian) (2018). https://doi.org/10.15407/dopovidi2018.11.011

  5. Martseniuk, V., Gefter, S., Piven’, A.: Integer solutions of implicit linear difference equations. In: Voronois Impact on Modern Science, Proceedings of the Sixth International Conference on Anal. Number Theory Spat. Tessellations, vol. 1, pp. 87–95. National Pedagogical Dragomanov University Publication (2018)

    Google Scholar 

  6. Hefter, S.L., Martseniuk, V.V., Piven, O.L.: Integer solutions of a second order implicit linear difference equation. Bukovinian Math. J. 6(3–4), 40–46 (in Ukrainian) (2018). https://doi.org/10.31861/bmj2018.03.040

  7. Berestovskii, V.N., Nikonorov, Y.G.: Continued fractions, the group \(GL(2, \mathbf{Z})\) and Pisot numbers. Sib. Adv. Math. 17(4), 268–290 (2007). https://doi.org/10.3103/S1055134407040025

  8. Gefter, S.L., Martseniuk, V.V., Goncharuk, A.B., Piven’ A.L.: Analogue of the Cramer rule for an implicit linear second order difference equation over the ring of integers. J. Math. Sci. 244, 601–607 (2020). https://doi.org/10.1007/s10958-019-04635-w

  9. Gefter, S., Goncharuk, A.: Generalized backward shift operators on the ring \(\mathbf{Z}[[x]]\), Cramer’s rule for infinite linear systems, and \(p\)-adic integers. Oper. Theory Adv. Appl. 268, 247–259 (2018). https://doi.org/10.1007/978-3-319-75996-8_13

  10. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. American Mathematical Society (2003)

    Google Scholar 

  11. Gefter, S.L., Piven, A.L.: Implicit linear nonhomogeneous difference equation in banach and locally convex spaces. J. Math. Phys. Anal. Geom. 15(3), 336–353 (2019). https://doi.org/10.15407/mag15.03.336

  12. Borevich, Z.I., Shafarevich, I.R.: Number Theory. Academic Press, Boston (1966)

    MATH  Google Scholar 

  13. Lang, S.: Algebra, Rev. 3rd edn. Springer, New York Inc. (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. MARTSENIUK .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

MARTSENIUK, V., Gefter, S.L., Piven’, A. (2020). Uniqueness Criterion and Cramer’s Rule for Implicit Higher Order Linear Difference Equations Over \(\mathbf {Z}\). In: Baigent, S., Bohner, M., Elaydi, S. (eds) Progress on Difference Equations and Discrete Dynamical Systems. ICDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-030-60107-2_16

Download citation

Publish with us

Policies and ethics