Skip to main content

On the Measurement of Dynamic Stability of Normal and Osteoarthritic Human Knee During Ascending and Descending the Stairs

  • Conference paper
  • First Online:
New Advances in Mechanisms, Mechanical Transmissions and Robotics (MTM&Robotics 2020)

Abstract

The aim of this study is to measure the variation of the flexion-extension angles of the knee and to study the stability of the knees movements during ascending and descending the stairs for healthy subjects and for patients suffering of osteoarthritic knee (OAK). Tools of nonlinear dynamics are used in order to quantify the stability of human healthy knee and OAK joints during ascending and descending the stairs. The values of Lyapunov exponents (LE), which represent the measure of instability of knee movements, are computed based on the experimental time series collected for both knee joints movements: flexion-extension (fl-ext) in sagittal plane and varus-valgus rotation (var-valg) in frontal plane. LEs obtained for the OAK are associated with more divergence, more variability and less stability, being larger than those are obtained for the knees of healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao, W., Liu, T., et al.: Gait analysis using wearable sensors. Sensors 12, 2255–2283 (2012)

    Article  Google Scholar 

  2. Tarnita, D.: Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 57(2), 373–382 (2016)

    Google Scholar 

  3. Muro-de-la-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems highlighting clinical applications. Sensors 14, 3362–3394 (2014)

    Article  Google Scholar 

  4. Tarnita, D., Geonea, I., Petcu, A., Tarnita, D.N.: Numerical simulations and experimental human gait analysis using wearable sensors. In: Husty, M., Hofbaur, M. (eds.) MESROB 2016. MMS, vol. 48, pp. 289–304. Springer, Cham (2018)

    Chapter  Google Scholar 

  5. Al-Zahrani, K.S., Bakheit, A.M.: A study of the gait characteristics of patients with chronic osteoarthritis of the knee. Disabil. Rehabil. 24, 275–278 (2002)

    Article  Google Scholar 

  6. McGibbon, C.A., Krebs, D.E.: Compensatory gait mechanics in patients with unilateral knee arthritis. J. Rheumatol. 29, 2410–2419 (2002)

    Google Scholar 

  7. Tarnita, D., Catana, M., Tarnita, D.N.: Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Rom. J. Morphol. Embryol. 54(2), 309–313 (2013)

    Google Scholar 

  8. Barbu, I., Alexandru, C.: Virtual prototyping tools applied in mechanical engineering. Mecatronica 3, 9–12 (2004)

    Google Scholar 

  9. Tarnita, D., Catana, M., Tarnita, D.N.: Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures. In: Rodić, A., Pisla, D., Bleuler, H. (eds.) New Trends on Medical and Service Robotics: Challenges and Solutions Mechanisms and Machine Science, vol. 20, pp. 283–297. Springer, Cham (2010)

    Chapter  Google Scholar 

  10. Enescu, M.L., Alexandru, C.: Modeling and simulation of A 6 DOF robot. Adv. Mater. Res. 463, 1116–1119 (2012)

    Article  Google Scholar 

  11. Tarnita, D., Tarnita, D.N., Bizdoaca, N., Popa, D.: Contributions on the dynamic simulation of the virtual model of the human knee joint. Mater. Sci. Eng. Tech. 40(1–2), 73–81 (2009). Special Edition Biomaterials Wiley-Vch.

    Google Scholar 

  12. Gherman, B., Birlescu, I., Nicolae, P., Carbone, G., Tarnita, D., Pisla, D.: On the singularity-free workspace of a parallel robot for lower-limb rehabilitation. Proc. Rom. Acad. Ser. A 20(4), 383–391 (2019)

    MathSciNet  Google Scholar 

  13. Vaida, C., Birlescu, I., Pisla, A., Ulinici, I., Tarnita, D., et al.: Systematic design of a parallel robotic system for lower limb rehabilitation. IEEE Access 8, 34522–34537 (2020)

    Article  Google Scholar 

  14. Plitea, N., et al.: Kinematic analysis of an exoskeleton-based robot for elbow and wrist rehabilitation. In: Carvalho, J., Martins, D., Simoni, R., Simas, H. (eds) Multibody Mechatronic Systems. MuSMe 2017. Mechanisms and Machine Science, vol. 54. Springer, Cham (2018)

    Google Scholar 

  15. Tarnita, D., Catana, M., Tarnita, D.N.: Design and simulation of an orthotic device for patients with osteoarthritis. In: Bleuler, H., Bouri, M., Mondada, F., Pisla, D., Rodic, A., Helmer, P. (eds.) New Trends in Medical and Service Robots, pp. 61–77. Springer, Cham (2016)

    Chapter  Google Scholar 

  16. Mateas, M., Moldovan, C., et al.: Novel rehabilitation system for the lower limb. IOP Conf. Ser. Mater. Sci. Eng. 444(5), 052021 (2018)

    Article  Google Scholar 

  17. Tarnita, D., Pisla, D., Geonea, I., Tarnita, D.N., Vaida, C.: Static and dynamic analysis of osteoarthritic and orthotic human knee. J. Bionic Eng. 16, 514–525 (2019)

    Article  Google Scholar 

  18. Geonea, I., Tarnita, D.: Design and evaluation of a new exoskeleton for gait rehabilitation. Mech. Sci. 8(2), 307–322 (2017)

    Article  Google Scholar 

  19. Hicks-Little, C., et al.: Lower extremity joint kinematics during stair climbing in knee osteoarthritis. Med. Sci. Sports Exer. 43(3), 516–524 (2011)

    Article  Google Scholar 

  20. Petcu, A., Georgescu, M., Calafeteanu, D., Tarniţă, D.: Kinematics and kinetics of healthy and osteoarthric knee during walking stairs. Bull. Transilvania Univ. Brasov Ser. I Eng. Sci. Spec. Issue 9, 203–208 (2016)

    Google Scholar 

  21. Tarnita, D., Popa, D., Tarnita, D.N., Grecu, D.: CAD method for three-dimensional model of the tibia bone and study of stresses using the finite element method. Rom. J. Morphol. Embryol. 47(2), 181–186 (2006)

    Google Scholar 

  22. Nadeau, S., McFadyen, B.J., Malouin, F.: Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking. Clin. Biomech. 18, 950–959 (2003)

    Article  Google Scholar 

  23. Riener, R., Rabuffetti, M., Frigo, C.: Stair ascent and descent at different inclinations. Gait Posture 15(1), 32–44 (2002)

    Article  Google Scholar 

  24. Tarnita, D., Geonea, I., Petcu, A., Tarnita, D.N.: Experimental characterization of human walking on stairs applied to humanoid dynamics. In: International Conference on RAAD, pp. 293–301 (2016)

    Google Scholar 

  25. Della, C.U., Bonato, P.A.: Novel design for an instrumented stairway. J. Biomech. 40(3), 702–704 (2007)

    Article  Google Scholar 

  26. Stacoff, A., Diezi, C., Luder, G., Stussi, E., Kramers-de Quervain, I.A.: Ground reacțion forces on stairs: effects of stair inclination and age. Gait Posture 21(1), 24–38 (2005)

    Article  Google Scholar 

  27. Protopapadaki, A., Drechsler, W.I., Cramp, M.C., Coutts, F.J., Scott, O.M.: Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin. Biomech. 22, 203–210 (2007)

    Article  Google Scholar 

  28. McFadyen, B.J., Winter, D.A.: An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21, 733–744 (1988)

    Article  Google Scholar 

  29. Andriacchi, T.P., et al.: A study of lower-limb mechanics during stair climbing. J. Bone Joint Surg. 62A, 749–757 (1980)

    Article  Google Scholar 

  30. Costigan, P.A., Deluzio, K.J., Wyss, U.P.: Knee and hip kinetics during normal stair climbing. Gait Posture 16, 31–38 (2002)

    Article  Google Scholar 

  31. Zachazewski, J.E., Riley, P.O., Krebs, D.E.: Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. J. Rehabil. Res. Dev. 30, 412–422 (1993)

    Google Scholar 

  32. Kowalk, D.L., Duncan, J.A., Vaughan, C.L.: Aduction–adduction moments at the knee during stair ascent and descent. J. Biomech. 29, 383–388 (1996)

    Article  Google Scholar 

  33. Andriacchi, T.P., et al.: The influence of total knee-replacement design on walking and stair climbing. J Bone Joint Surg. 64A, 1328–1335 (1982)

    Article  Google Scholar 

  34. Bergmann, G., Graichen, F., Rohlmann, A.: Is staircase walking a risk for the fixation of hip implants. J. Biomech. 5, 535–553 (1995)

    Article  Google Scholar 

  35. Ferreira, C.R., Barauna, M.A., da Silva, K.C.: Analysis of the performance of above-knee amputees in climbing stairs. In: Proceedings of the Fourteenth International Symposium on Biomechanics in Sports. Lisbon, Portugal, pp. 533–536 (1996)

    Google Scholar 

  36. Powers, C.M., Boyd, L.A., Torburn, L., Perry, J.: Stair ambulation in persons with transtibial amputation: an analysis of the Seattle LightFoot. J. Rehabil. Res. Develop. 34, 9–18 (1995)

    Google Scholar 

  37. Dingwell, J.B., Cusumano, J.P., et al.: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123, 27–32 (2001)

    Article  Google Scholar 

  38. Miyoshi, T., Murata, A.: Chaotic characteristic in human hand movement. In: Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, Osaka, Japan, 27–29 September, pp. 194-199 (2000)

    Google Scholar 

  39. Tarnita, D., Georgescu, M., Geonea, I., Petcu, A., Tarnita, D.-N.: Nonlinear analysis of human ankle dynamics. In: Carbone, G., Ceccarelli, M., Pisla, D. (eds.) New Trends in Medical and Service Robotics. MMS, vol. 65, pp. 235–243. Springer, Cham (2019)

    Chapter  Google Scholar 

  40. Tarnita, D., Georgescu, M.: Applications of nonlinear dynamics to human knee movement on plane & inclined treadmill. In: Wenger, P., Chevallereau, C., Pisla, D., Bleuler, H., Rodić, A. (eds.) New Trends in Medical & Service Robots, vol. 39, pp. 59–73. Springer, Cham (2016)

    Google Scholar 

  41. Hurmuzlu, Y., Basdogan, C., Stoianovici, D.: On the measurement of dynamic stability of human locomotion. ASME J. Biomech. Eng. 116(1), 30–36 (1994)

    Article  Google Scholar 

  42. Tarnita, D., Catana, M., Tarnita, D.N.: Nonlinear analysis of normal human gait for different activities with application to bipedal locomotion. Rev. Roum. J. Tech. Sci. Appl. Mech 58(1–2), 177–192 (2013)

    Google Scholar 

  43. Tarnita, D., Marghitu, D.: Nonlinear dynamics of normal and osteoarthritic human knee. In: Proceedings of the Romanian Academy, pp. 353–360 (2017)

    Google Scholar 

  44. Dingwell, J.B., Cusumano, J.P.: Nonlinear time series analysis of normal and pathological human walking. Chaos 10(4), 848–863 (2000)

    Article  MATH  Google Scholar 

  45. Yang, C., Wu, Q.: On stabilization of bipedal robots during disturbed standing using the concept of Lyapunov exponents. Robotica 24(5), 621–624 (2006)

    Article  Google Scholar 

  46. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time. Ser. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  Google Scholar 

  47. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  48. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. PhysRev A33, 1134–1140 (1986)

    MathSciNet  MATH  Google Scholar 

  49. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. PhysRev A45, 3403–3411 (1992)

    Google Scholar 

  50. Rosenstein, M.T., Collins, I.J., Deluca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physics D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. www.biometricsltd.com/. Accessed 08 Apr 2020

  52. www.simi.com. Accessed 20 Mar 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Tarnita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarnita, D., Georgescu, M., Petcu, A. (2021). On the Measurement of Dynamic Stability of Normal and Osteoarthritic Human Knee During Ascending and Descending the Stairs. In: Lovasz, EC., Maniu, I., Doroftei, I., Ivanescu, M., Gruescu, CM. (eds) New Advances in Mechanisms, Mechanical Transmissions and Robotics . MTM&Robotics 2020. Mechanisms and Machine Science, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-60076-1_49

Download citation

Publish with us

Policies and ethics