Skip to main content

Temporal Ontology-Mediated Queries and First-Order Rewritability: A Short Course

  • Chapter
  • First Online:
Reasoning Web. Declarative Artificial Intelligence (Reasoning Web 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12258))

Included in the following conference series:

  • 538 Accesses

Abstract

We discuss recent attempts to extend the ontology-based data access (aka virtual knowledge graph) paradigm to the temporal setting. Our main aim is to understand when answering temporal ontology-mediated queries can be reduced to evaluating standard first-order queries over timestamped data and what numeric predicates and operators are required in such reductions. We consider two ways of introducing a temporal dimension in ontologies and queries: using linear temporal logic LTL over discrete time and using metric temporal logic MTL over dense time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.obdasystems.com.

  2. 2.

    https://ontopic.biz.

  3. 3.

    https://www.w3.org/TR/owl2-overview/.

  4. 4.

    https://www.w3.org/TR/sparql11-query/.

  5. 5.

    https://www.w3.org/TR/r2rml/.

  6. 6.

    https://www.w3.org/TR/owl2-overview/.

  7. 7.

    Here, we (ab)use set-theoretic notation for lists and write \(\varvec{\ell } \subseteq \mathsf {tem}(\mathcal {A})\) to say that every element of \(\varvec{\ell }\) is an element of \(\mathsf {tem}(\mathcal {A})\).

  8. 8.

    Non-uniform \(\smash {{\textsc {AC}^0}{}}\) is the class of languages computable by bounded-depth polynomial-size circuits with unary not-gates and unbounded fan-in and- and or-gates. Evaluation of FO\((<)\)-formulas extended with arbitrary numeric predicates is known to be in non-uniform \(\smash {{\textsc {AC}^0}{}}\) for data complexity. If the circuits mentioned above can be generated by a Turing machine in, say, LogTime, we speak about LogTime-uniform \({\textsc {AC}^0}\). For example, evaluation of FO\((<)\)-formulas extended with \(\textsc {plus}\) and \(\textsc {times}\) is in LogTime-uniform \({\textsc {AC}^0}\).

  9. 9.

    This classification originates in the DL-Lite family of description logics  [6].

  10. 10.

    \(\textsc {NC}^1\) is the class of languages computable by a family of polynomial-size logarithmic-depth circuits with gates of at most two inputs.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)

    MATH  Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM (JACM) 43(1), 116–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993). http://dx.doi.org/10.1006/inco.1993.1025

    Article  MathSciNet  MATH  Google Scholar 

  4. Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 493–574. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-1.50015-9

  5. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  6. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI (2013)

    Google Scholar 

  8. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: First-order rewritability of temporal ontology-mediated queries. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 2706–2712 (2015)

    Google Scholar 

  9. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Ontology-mediated query answering over temporal data: a survey (invited talk). In: TIME. LIPIcs, vol. 90, pp. 1:1–1:37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  10. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: First-order rewritability of ontology-mediated queries in linear temporal logic. CoRR abs/2004.07221 (2020). https://arxiv.org/abs/2004.07221

  11. Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal description logics with interval-rigid names. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 60–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_4

    Chapter  Google Scholar 

  12. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  13. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  14. Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal logic. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 245–259. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_24

    Chapter  Google Scholar 

  15. Barceló, P., Feier, C., Lutz, C., Pieris, A.: When is ontology-mediated querying efficient? CoRR abs/2003.07800 (2020). https://arxiv.org/abs/2003.07800

  16. Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages in nc\({^1}\). J. Comput. Syst. Sci. 44(3), 478–499 (1992). https://doi.org/10.1016/0022-0000(92)90014-A

    Article  MathSciNet  MATH  Google Scholar 

  17. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for analyzing reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 1431–1438. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657

  18. Benfold, B., Harland, H., Bellotto, N., Bellotto, N., et al.: Cognitive visual tracking and camera control. Comput. Vis. Image Underst. 116(3), 457–471 (2012)

    Article  Google Scholar 

  19. Berger, R.: The Undecidability of the Domino Problem. American Mathematical Society (1966)

    Google Scholar 

  20. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V., Zakharyaschev, M.: The complexity of ontology-based data access with OWL 2 QL and bounded treewidth queries. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 201–216. ACM (2017)

    Google Scholar 

  21. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Ontology-mediated queries: combined complexity and succinctness of rewritings via circuit complexity. J. ACM 65(5), 28:1–28:51 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bienvenu, M., Kikot, S., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: On the parametrised complexity of tree-shaped ontology-mediated queries in OWL 2 QL. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Description Logics, CEUR Workshop Proceedings, Montpellier, France, 18–21 July 2017, vol. 1879 (2017). CEUR-WS.org. http://ceur-ws.org/Vol-1879/paper55.pdf

  23. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic, Springer (1997)

    Google Scholar 

  24. Brandt, S., et al.: Two-dimensional rule language for querying sensor log data: a framework and use cases. In: Proceedings of the 26th International Symposium on Temporal Representation and Reasoning, TIME 2019. vol. 147, pp. 7:1–7:15. Dagstuhl Publishing (2019)

    Google Scholar 

  25. Brandt, S., Kalayci, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brandt, S., Kalaycı, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Brzoska, C., Schäfer, K.: Temporal logic programming applied to image sequence evaluation (1995)

    Google Scholar 

  28. Büchi, J.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6(1–6), 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  29. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chomicki, J., Toman, D.: Temporal logic in information systems. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems (The Book Grow Out of the Dagstuhl Seminar 9529: Role of Logics in Information Systems, 1995), pp. 31–70. Kluwer (1998)

    Google Scholar 

  31. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Compton, K.J., Laflamme, C.: An algebra and a logic for NC\({^1}\). Inf. Comput. 87(1/2), 240–262 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Compton, K.J., Straubing, H.: Characterizations of regular languages in low level complexity classes. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science, Entering the 21th Century, pp. 235–246. World Scientific (2001)

    Google Scholar 

  34. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  35. Elgot, C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–1072. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-1.50021-4

  37. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded future. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 60–75. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0_5

    Chapter  Google Scholar 

  38. Fisher, M.: Temporal representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 513–550. Elsevier (2008). https://doi.org/10.1016/S1574-6526(07)03012-X

  39. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press, Oxford (1994)

    Google Scholar 

  41. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications, Studies in Logic, vol. 148. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  42. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167–243 (2005). https://doi.org/10.1613/jair.1537

    Article  MathSciNet  MATH  Google Scholar 

  43. Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Products of ‘transitive’ modal logics. J. Symb. Log. 70(3), 993–1021 (2005). https://doi.org/10.2178/jsl/1122038925

    Article  MathSciNet  MATH  Google Scholar 

  44. Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C Recommendation (2013). http://www.w3.org/TR/sparql11-entailment

  45. Grädel, E.: On transitive closure logic. In: Börger, E., Jäger, G., Kleine Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 149–163. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023764

    Chapter  MATH  Google Scholar 

  46. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2007)

    Article  Google Scholar 

  47. Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics. In: Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 837–845. IOS Press (2016)

    Google Scholar 

  48. Heintz, F., De Leng, D.: Spatio-temporal stream reasoning with incomplete spatial information. In: ECAI, pp. 429–434 (2014)

    Google Scholar 

  49. Heintz, F., Kvarnström, J., Doherty, P.: Stream reasoning in DyKnow: a knowledge processing middleware system. In: Proceedings of 1st International Workshop Stream Reasoning (2009)

    Google Scholar 

  50. Henzinger, T.A.: Temporal specification and verification of real-time systems. Technical report, Department of Computer Science, Stanford University, CA (1991)

    Google Scholar 

  51. Hernich, A., Lutz, C., Papacchini, F., Wolter, F.: Dichotomies in ontology-mediated querying with the guarded fragment. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 185–199. ACM (2017)

    Google Scholar 

  52. Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004). http://content.iospress.com/articles/fundamenta-informaticae/fi62-1-02

  53. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_15

    Chapter  Google Scholar 

  54. Hodkinson, I.M., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of decidable fragments of first-order linear temporal logics. In: 10th International Symposium on Temporal Representation and Reasoning/4th International Conference on Temporal Logic (TIME-ICTL 2003), Cairns, Queensland, Australia, 8–10 July 2003, pp. 91–98. IEEE Computer Society (2003). https://doi.org/10.1109/TIME.2003.1214884

  55. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 349–357. IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.41

  56. Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  57. Kamp, H.W.: Tense logic and the theory of linear order. Ph.D. thesis, Computer Science Department, University of California at Los Angeles, USA (1968)

    Google Scholar 

  58. Kharlamov, E., Mehdi, G., Savkovic, O., Xiao, G., Kalayci, E.G., Roshchin, M.: Semantically-enhanced rule-based diagnostics for industrial Internet of Things: the SDRL language and case study for Siemens trains and turbines. J. Web Semant. 56, 11–29 (2019)

    Article  Google Scholar 

  59. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with databases: A short course. In: Reasoning Web. Semantic Technologies for Intelligent Data Access - 9th International Summer School 2013, Proceedings, Mannheim, Germany, 30 July–2 August 2013, pp. 194–229 (2013). https://doi.org/10.1007/978-3-642-39784-4_5

  60. Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Boolean role inclusions in DL-Lite with and without time (2020). Manuscript

    Google Scholar 

  61. Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and query rewriting. In: Reasoning Web. Reasoning on the Web in the Big Data Era - 10th International Summer School 2014, Proceedings, Athens, Greece, 8–13 September 2014, pp. 195–244 (2014). https://doi.org/10.1007/978-3-319-10587-1_5

  62. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990). http://dx.doi.org/10.1007/BF01995674

    Article  Google Scholar 

  63. de Leng, D., Heintz, F.: Approximate stream reasoning with metric temporal logic under uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2760–2767 (2019)

    Google Scholar 

  64. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07003-1

    Book  MATH  Google Scholar 

  65. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In: Proceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME 2008), pp. 3–14 (2008)

    Google Scholar 

  66. Lutz, C., Sabellek, L.: Ontology-mediated querying with the description logic EL: trichotomy and linear datalog rewritability. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1181–1187 (2017). https://doi.org/10.24963/ijcai.2017/164. ijcai.org

  67. Lutz, C., Wolter, F.: The data complexity of description logic ontologies. Logical Methods Comput. Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:7)2017

  68. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems-Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

    Book  MATH  Google Scholar 

  69. Motik, B.: Representing and querying validity time in RDF and OWL: a logic-based approach. J. Web Semant. 12, 3–21 (2012)

    Article  Google Scholar 

  70. Münch, D., IJsselmuiden, J., Arens, M., Stiefelhagen, R.: High-level situation recognition using fuzzy metric temporal logic, case studies in surveillance and smart environments. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 882–889. IEEE (2011)

    Google Scholar 

  71. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 188–197. IEEE (2005)

    Google Scholar 

  72. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_1

    Chapter  Google Scholar 

  73. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8_5

    Chapter  MATH  Google Scholar 

  74. Rabinovich, A.: A proof of Kamp’s theorem. Logical Methods Comput. Sci. 10(1), 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M.: Data complexity and rewritability of ontology-mediated queries in metric temporal logic under the event-based semantics. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1851–1857 (2019). https://doi.org/10.24963/ijcai.2019/256. ijcai.org

  76. Schaerf, A.: On the complexity of the instance checking problem in concept languages with existential quantification. J. Intell. Inf. Syst. 2(3), 265–278 (1993)

    Article  Google Scholar 

  77. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc. 15(1), 129–152 (2016)

    Article  Google Scholar 

  78. Straubing, H., Weil, P.: An introduction to finite automata and their connection to logic. CoRR abs/1011.6491 (2010)

    Google Scholar 

  79. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser Verlag, Basel (1994)

    Book  MATH  Google Scholar 

  80. To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109(17), 1010–1014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Trakhtenbrot, B.: Finite automata and the logic of one-place predicates. Siberian Math. J. 3, 103–131 (1962). English translation in: AMS Transl. 59 (1966) 23–55

    MathSciNet  MATH  Google Scholar 

  82. Wałęga, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.: DatalogMTL: computational complexity and expressive power. In: International Joint Conferences on Artificial Intelligence (IJCAI) (2019)

    Google Scholar 

  83. Wałęga, P.A., Kaminski, M., Grau, B.C.: Reasoning over streaming data in metric temporal datalog. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3092–3099 (2019)

    Google Scholar 

  84. Xiao, G., et al.: Ontology-based data access: a survey. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 5511–5519 (2018). https://doi.org/10.24963/ijcai.2018/777. ijcai.org

  85. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of systems and use cases. Data Intell. 1(3), 201–223 (2019). https://doi.org/10.1162/dint_a_0001110.1162/dint_a_00011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC U.K. grants EP/S032282 ‘\(\textit{quant}^\textit{MD}\): Ontology-Based Management for Many-Dimensional Quantitative Data’ and EP/S032347 ‘OASIS: Ontology Reasoning over Frequently-Changing and Streaming Data’, and by the SIRIUS Centre for Scalable Data Access (Research Council of Norway).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Ryzhikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M. (2020). Temporal Ontology-Mediated Queries and First-Order Rewritability: A Short Course. In: Manna, M., Pieris, A. (eds) Reasoning Web. Declarative Artificial Intelligence. Reasoning Web 2020. Lecture Notes in Computer Science(), vol 12258. Springer, Cham. https://doi.org/10.1007/978-3-030-60067-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60067-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60066-2

  • Online ISBN: 978-3-030-60067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics