Abstract
We discuss recent attempts to extend the ontology-based data access (aka virtual knowledge graph) paradigm to the temporal setting. Our main aim is to understand when answering temporal ontology-mediated queries can be reduced to evaluating standard first-order queries over timestamped data and what numeric predicates and operators are required in such reductions. We consider two ways of introducing a temporal dimension in ontologies and queries: using linear temporal logic LTL over discrete time and using metric temporal logic MTL over dense time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
Here, we (ab)use set-theoretic notation for lists and write \(\varvec{\ell } \subseteq \mathsf {tem}(\mathcal {A})\) to say that every element of \(\varvec{\ell }\) is an element of \(\mathsf {tem}(\mathcal {A})\).
- 8.
Non-uniform \(\smash {{\textsc {AC}^0}{}}\) is the class of languages computable by bounded-depth polynomial-size circuits with unary not-gates and unbounded fan-in and- and or-gates. Evaluation of FO\((<)\)-formulas extended with arbitrary numeric predicates is known to be in non-uniform \(\smash {{\textsc {AC}^0}{}}\) for data complexity. If the circuits mentioned above can be generated by a Turing machine in, say, LogTime, we speak about LogTime-uniform \({\textsc {AC}^0}\). For example, evaluation of FO\((<)\)-formulas extended with \(\textsc {plus}\) and \(\textsc {times}\) is in LogTime-uniform \({\textsc {AC}^0}\).
- 9.
This classification originates in the DL-Lite family of description logics [6].
- 10.
\(\textsc {NC}^1\) is the class of languages computable by a family of polynomial-size logarithmic-depth circuits with gates of at most two inputs.
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM (JACM) 43(1), 116–146 (1996)
Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993). http://dx.doi.org/10.1006/inco.1993.1025
Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 493–574. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-1.50015-9
Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)
Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)
Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI (2013)
Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: First-order rewritability of temporal ontology-mediated queries. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 2706–2712 (2015)
Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Ontology-mediated query answering over temporal data: a survey (invited talk). In: TIME. LIPIcs, vol. 90, pp. 1:1–1:37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)
Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: First-order rewritability of ontology-mediated queries in linear temporal logic. CoRR abs/2004.07221 (2020). https://arxiv.org/abs/2004.07221
Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal description logics with interval-rigid names. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 60–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_4
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal logic. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 245–259. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_24
Barceló, P., Feier, C., Lutz, C., Pieris, A.: When is ontology-mediated querying efficient? CoRR abs/2003.07800 (2020). https://arxiv.org/abs/2003.07800
Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages in nc\({^1}\). J. Comput. Syst. Sci. 44(3), 478–499 (1992). https://doi.org/10.1016/0022-0000(92)90014-A
Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for analyzing reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 1431–1438. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657
Benfold, B., Harland, H., Bellotto, N., Bellotto, N., et al.: Cognitive visual tracking and camera control. Comput. Vis. Image Underst. 116(3), 457–471 (2012)
Berger, R.: The Undecidability of the Domino Problem. American Mathematical Society (1966)
Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V., Zakharyaschev, M.: The complexity of ontology-based data access with OWL 2 QL and bounded treewidth queries. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 201–216. ACM (2017)
Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Ontology-mediated queries: combined complexity and succinctness of rewritings via circuit complexity. J. ACM 65(5), 28:1–28:51 (2018)
Bienvenu, M., Kikot, S., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: On the parametrised complexity of tree-shaped ontology-mediated queries in OWL 2 QL. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Description Logics, CEUR Workshop Proceedings, Montpellier, France, 18–21 July 2017, vol. 1879 (2017). CEUR-WS.org. http://ceur-ws.org/Vol-1879/paper55.pdf
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic, Springer (1997)
Brandt, S., et al.: Two-dimensional rule language for querying sensor log data: a framework and use cases. In: Proceedings of the 26th International Symposium on Temporal Representation and Reasoning, TIME 2019. vol. 147, pp. 7:1–7:15. Dagstuhl Publishing (2019)
Brandt, S., Kalayci, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)
Brandt, S., Kalaycı, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)
Brzoska, C., Schäfer, K.: Temporal logic programming applied to image sequence evaluation (1995)
Büchi, J.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6(1–6), 66–92 (1960)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)
Chomicki, J., Toman, D.: Temporal logic in information systems. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems (The Book Grow Out of the Dagstuhl Seminar 9529: Role of Logics in Information Systems, 1995), pp. 31–70. Kluwer (1998)
Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–158 (1986)
Compton, K.J., Laflamme, C.: An algebra and a logic for NC\({^1}\). Inf. Comput. 87(1/2), 240–262 (1990)
Compton, K.J., Straubing, H.: Characterizations of regular languages in low level complexity classes. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science, Entering the 21th Century, pp. 235–246. World Scientific (2001)
Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2016)
Elgot, C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–1072. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-1.50021-4
Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded future. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 60–75. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0_5
Fisher, M.: Temporal representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 513–550. Elsevier (2008). https://doi.org/10.1016/S1574-6526(07)03012-X
Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)
Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press, Oxford (1994)
Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications, Studies in Logic, vol. 148. Elsevier, Amsterdam (2003)
Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167–243 (2005). https://doi.org/10.1613/jair.1537
Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Products of ‘transitive’ modal logics. J. Symb. Log. 70(3), 993–1021 (2005). https://doi.org/10.2178/jsl/1122038925
Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C Recommendation (2013). http://www.w3.org/TR/sparql11-entailment
Grädel, E.: On transitive closure logic. In: Börger, E., Jäger, G., Kleine Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 149–163. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023764
Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2007)
Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics. In: Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 837–845. IOS Press (2016)
Heintz, F., De Leng, D.: Spatio-temporal stream reasoning with incomplete spatial information. In: ECAI, pp. 429–434 (2014)
Heintz, F., Kvarnström, J., Doherty, P.: Stream reasoning in DyKnow: a knowledge processing middleware system. In: Proceedings of 1st International Workshop Stream Reasoning (2009)
Henzinger, T.A.: Temporal specification and verification of real-time systems. Technical report, Department of Computer Science, Stanford University, CA (1991)
Hernich, A., Lutz, C., Papacchini, F., Wolter, F.: Dichotomies in ontology-mediated querying with the guarded fragment. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 185–199. ACM (2017)
Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004). http://content.iospress.com/articles/fundamenta-informaticae/fi62-1-02
Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_15
Hodkinson, I.M., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of decidable fragments of first-order linear temporal logics. In: 10th International Symposium on Temporal Representation and Reasoning/4th International Conference on Temporal Logic (TIME-ICTL 2003), Cairns, Queensland, Australia, 8–10 July 2003, pp. 91–98. IEEE Computer Society (2003). https://doi.org/10.1109/TIME.2003.1214884
Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 349–357. IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.41
Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5
Kamp, H.W.: Tense logic and the theory of linear order. Ph.D. thesis, Computer Science Department, University of California at Los Angeles, USA (1968)
Kharlamov, E., Mehdi, G., Savkovic, O., Xiao, G., Kalayci, E.G., Roshchin, M.: Semantically-enhanced rule-based diagnostics for industrial Internet of Things: the SDRL language and case study for Siemens trains and turbines. J. Web Semant. 56, 11–29 (2019)
Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with databases: A short course. In: Reasoning Web. Semantic Technologies for Intelligent Data Access - 9th International Summer School 2013, Proceedings, Mannheim, Germany, 30 July–2 August 2013, pp. 194–229 (2013). https://doi.org/10.1007/978-3-642-39784-4_5
Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Boolean role inclusions in DL-Lite with and without time (2020). Manuscript
Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and query rewriting. In: Reasoning Web. Reasoning on the Web in the Big Data Era - 10th International Summer School 2014, Proceedings, Athens, Greece, 8–13 September 2014, pp. 195–244 (2014). https://doi.org/10.1007/978-3-319-10587-1_5
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990). http://dx.doi.org/10.1007/BF01995674
de Leng, D., Heintz, F.: Approximate stream reasoning with metric temporal logic under uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2760–2767 (2019)
Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07003-1
Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In: Proceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME 2008), pp. 3–14 (2008)
Lutz, C., Sabellek, L.: Ontology-mediated querying with the description logic EL: trichotomy and linear datalog rewritability. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1181–1187 (2017). https://doi.org/10.24963/ijcai.2017/164. ijcai.org
Lutz, C., Wolter, F.: The data complexity of description logic ontologies. Logical Methods Comput. Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:7)2017
Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems-Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7
Motik, B.: Representing and querying validity time in RDF and OWL: a logic-based approach. J. Web Semant. 12, 3–21 (2012)
Münch, D., IJsselmuiden, J., Arens, M., Stiefelhagen, R.: High-level situation recognition using fuzzy metric temporal logic, case studies in surveillance and smart environments. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 882–889. IEEE (2011)
Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 188–197. IEEE (2005)
Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_1
Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8_5
Rabinovich, A.: A proof of Kamp’s theorem. Logical Methods Comput. Sci. 10(1), 1–16 (2014)
Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M.: Data complexity and rewritability of ontology-mediated queries in metric temporal logic under the event-based semantics. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1851–1857 (2019). https://doi.org/10.24963/ijcai.2019/256. ijcai.org
Schaerf, A.: On the complexity of the instance checking problem in concept languages with existential quantification. J. Intell. Inf. Syst. 2(3), 265–278 (1993)
Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc. 15(1), 129–152 (2016)
Straubing, H., Weil, P.: An introduction to finite automata and their connection to logic. CoRR abs/1011.6491 (2010)
Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser Verlag, Basel (1994)
To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109(17), 1010–1014 (2009)
Trakhtenbrot, B.: Finite automata and the logic of one-place predicates. Siberian Math. J. 3, 103–131 (1962). English translation in: AMS Transl. 59 (1966) 23–55
Wałęga, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.: DatalogMTL: computational complexity and expressive power. In: International Joint Conferences on Artificial Intelligence (IJCAI) (2019)
Wałęga, P.A., Kaminski, M., Grau, B.C.: Reasoning over streaming data in metric temporal datalog. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3092–3099 (2019)
Xiao, G., et al.: Ontology-based data access: a survey. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 5511–5519 (2018). https://doi.org/10.24963/ijcai.2018/777. ijcai.org
Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of systems and use cases. Data Intell. 1(3), 201–223 (2019). https://doi.org/10.1162/dint_a_0001110.1162/dint_a_00011
Acknowledgements
This work was supported by the EPSRC U.K. grants EP/S032282 ‘\(\textit{quant}^\textit{MD}\): Ontology-Based Management for Many-Dimensional Quantitative Data’ and EP/S032347 ‘OASIS: Ontology Reasoning over Frequently-Changing and Streaming Data’, and by the SIRIUS Centre for Scalable Data Access (Research Council of Norway).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M. (2020). Temporal Ontology-Mediated Queries and First-Order Rewritability: A Short Course. In: Manna, M., Pieris, A. (eds) Reasoning Web. Declarative Artificial Intelligence. Reasoning Web 2020. Lecture Notes in Computer Science(), vol 12258. Springer, Cham. https://doi.org/10.1007/978-3-030-60067-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-60067-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60066-2
Online ISBN: 978-3-030-60067-9
eBook Packages: Computer ScienceComputer Science (R0)