Skip to main content

On the Complexity of Computing Integral Bases of Function Fields

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

Let \(\mathcal {C}\) be a plane curve given by an equation \(f(x,y)=0\) with \(f\in K[x][y]\) a monic irreducible polynomial. We study the problem of computing an integral basis of the algebraic function field \(K(\mathcal {C})\) and give new complexity bounds for three known algorithms dealing with this problem. For each algorithm, we study its subroutines and, when it is possible, we modify or replace them so as to take advantage of faster primitives. Then, we combine complexity results to derive an overall complexity estimate for each algorithm. In particular, we modify an algorithm due to Böhm et al. and achieve a quasi-optimal runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvind, V., Vijayaraghavan, T.C.: The complexity of solving linear equations over a finite ring. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 472–484. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_39

    Chapter  Google Scholar 

  2. Bauch, J.D.: Computation of integral bases. J. Number Theory 165, 382–407 (2016)

    Article  MathSciNet  Google Scholar 

  3. de Beaudrap, N.: On the complexity of solving linear congruences and computing nullspaces modulo a constant. arXiv preprint arXiv:1202.3949 (2012)

  4. Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Computing integral bases via localization and Hensel lifting. arXiv preprint arXiv:1505.05054 (2015)

  5. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel algorithms for normalization. J. Symb. Comput. 51, 99–114 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bostan, A., et al.: Algorithmes efficaces en calcul formel (2017)

    Google Scholar 

  7. De Jong, T., Pfister, G.: Local Analytic Geometry: Basic Theory and Applications. Springer, Wiesbaden (2013). https://doi.org/10.1007/978-3-322-90159-0

    Book  MATH  Google Scholar 

  8. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 289–290. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-3_279

    Chapter  Google Scholar 

  9. Diem, C.: On arithmetic and the discrete logarithm problem in class groups of curves. Habilitation, Universität Leipzig (2009)

    Google Scholar 

  10. Duval, D.: Rational Puiseux expansions. Compositio Mathematica 70(2), 119–154 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symb. Comput. 33(4), 425–445 (2002)

    Article  MathSciNet  Google Scholar 

  12. van Hoeij, M.: An algorithm for computing an integral basis in an algebraic function field. J. Symb. Comput. 18(4), 353–363 (1994)

    Article  MathSciNet  Google Scholar 

  13. van Hoeij, M., Novocin, A.: A reduction algorithm for algebraic function fields (2008)

    Google Scholar 

  14. van Hoeij, M., Stillman, M.: Computing an integral basis for an algebraic function field (2015). https://www.math.fsu.edu/~hoeij/papers/2015/slides.pdf

  15. van der Hoeven, J., Lecerf, G.: Directed evaluation, December 2018. Working paper or preprint. https://hal.archives-ouvertes.fr/hal-01966428

  16. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767–1802 (2011)

    Article  MathSciNet  Google Scholar 

  17. Labahn, G., Neiger, V., Zhou, W.: Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix. J. Complexity 42, 44–71 (2017)

    Article  MathSciNet  Google Scholar 

  18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303 (2014)

    Google Scholar 

  19. Moroz, G., Schost, É.: A fast algorithm for computing the truncated resultant. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp. 341–348 (2016)

    Google Scholar 

  20. Neiger, V.: Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp. 365–372 (2016)

    Google Scholar 

  21. Poteaux, A., Weimann, M.: Computing Puiseux series: a fast divide and conquer algorithm. arXiv preprint arXiv:1708.09067 (2017)

  22. Trager, B.M.: Algorithms for manipulating algebraic functions. SM thesis MIT (1976)

    Google Scholar 

  23. Trager, B.M.: Integration of algebraic functions. Ph.D. thesis, Massachusetts Institute of Technology (1984)

    Google Scholar 

  24. Walker, R.J.: Algebraic curves (1950)

    Google Scholar 

  25. Zassenhaus, H.: Ein algorithmus zur berechnung einer minimalbasis über gegebener ordnung. In: Collatz, L., Meinardus, G., Unger, H. (eds.) Funktionalanalysis Approximationstheorie Numerische Mathematik, pp. 90–103. Springer, Basel (1967). https://doi.org/10.1007/978-3-0348-5821-2_10

    Chapter  Google Scholar 

Download references

Acknowledgments

Part of this work was completed while the author was at the Symbolic Computation Group of the University of Waterloo. This paper is part of a project that has received funding from the French Agence de l’Innovation de Défense. The author is grateful to Grégoire Lecerf, Adrien Poteaux and Éric Schost for helpful discussions and to Grégoire Lecerf for feedback on a preliminary version of this paper. The author also wishes to thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Abelard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abelard, S. (2020). On the Complexity of Computing Integral Bases of Function Fields. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics