Skip to main content

Acceleration of Subdivision Root-Finding for Sparse Polynomials

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. A recent front-running algorithm relies on subdivision iterations. Already its initial implementation of 2018 has competed for user’s choice for root-finding in a region that contains a small number of roots. Recently, we significantly accelerated the basic blocks of these iterations, namely root-counting and exclusion tests. In  [18], we solidified this approach and made our acceleration dramatic in the case of sparse polynomials and other ones defined by a black box for their fast evaluation. Our techniques are novel and should be of independent interest. In the present paper and its companion  [19], we expose a substantial part of that work.

This research has been supported by NSF Grants CCF–1563942 and CCF–1733834 and PSC CUNY Award 69813 00 48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It becomes the second such root-finder. The first one, of  [13, 16], has provided nearly optimal solution also for numerical factorization of a polynomial into the product of its linear factors, which is a problem of high independent interest  [18].

  2. 2.

    Unlike paper  [21], this result is deduced in [18] from Theorem 2, which is also the basis for correctness proof of Sect. 5 for our probabilistic root-counter.

  3. 3.

    One can extend the algorithm by applying Algorithm 1a to a disc \(D(0, \theta )\) for smaller \(\theta >1\) and modifying bound (9) accordingly. See a refined version of this algorithm in [18].

  4. 4.

    One can slightly strengthen our estimates based on the observation that \(|\widehat{p}_0|^2\) and \(||\widehat{\mathbf{p}}_1||^2\) are \(\chi ^2\)-functions of dimension 1 and \(q-1\), respectively.

References

  1. Baur, W., Strassen, V.: On the complexity of partial derivatives. Theor. Comput. Sci. 22, 317–330 (1983)

    Article  MathSciNet  Google Scholar 

  2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration. J. Symbolic Comput. 86, 51–96 (2018) Procs. version, In: ISSAC 2016, pp. 71–78. ACM Press, New York (2016) 10.1145/2930889.2930939 https://doi.org/10.1016/j.jsc.2017.03.009

  3. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms 23, 127–173 (2000). https://doi.org/10.1023/A:1019199917103

    Article  MathSciNet  MATH  Google Scholar 

  4. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014). https://doi.org/10.1016/j.cam.2013.04.037

    Article  MathSciNet  MATH  Google Scholar 

  5. Henrici, P.: Applied and Computational Complex Analysis, vol. 1 : Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)

    Google Scholar 

  6. Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra. Wiley, New York (1969)

    MATH  Google Scholar 

  7. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math. Mon. 66, 464–466 (1959). https://doi.org/10.2307/2310626

    Article  MathSciNet  MATH  Google Scholar 

  8. Imbach, R., Pan, V.Y.: Polynomial root clustering and explicit deflation. In: D. Salmanig, D. et al. (eds.) Mathematical Aspects of Computer and Information Sciences (MACIS 2019), LNCS, vol. 11989, pp. 1–16. Springer Nature Switzerland AG 2020, Chapter No: 11, Chapter arXiv:1906.04920 (11 Jun 2019) ) https://doi.org/10.1007/978-3-030-43120-4_11

  9. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In: Proceedings of ACM-SIGSAM ISSAC ’20, pp. 249–256, July 20–23, 2020, Kalamata, Greece, ACM Press, New York (2020). ACM ISBN 978-1-4503-7100-1/20/07 https://doi.org/10.1145/3373207.3403979

  10. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_28

    Chapter  Google Scholar 

  11. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials ... and now for real! In: Internernational Symposium Symbolic Algebraic Computation (ISSAC 2016), pp. 301–310. ACM Press, New York (2016) https://doi.org/10.1145/2930889.2930937

  12. Linnainmaa, S.: Taylor Expansion of the Accumulated Rounding Errors. BIT 16, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  13. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proceeding 27th Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 741–750. ACM Press, New York (1995) https://doi.org/10.1145/225058.225292

  14. Pan, V.Y.: Approximation of complex polynomial zeros: modified Quad-tree (Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–264 (2000). https://doi.org/10.1006/jcom.1999

    Article  MATH  Google Scholar 

  15. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001) https://doi.org/10.1007/978-1-4612-0129-8

  16. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002). https://doi.org/10.1006/jsco.2002.0531

    Article  MATH  Google Scholar 

  17. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_26

    Chapter  Google Scholar 

  18. Pan, V.Y.: New Acceleration of Nearly Optimal Univariate Polynomial Root-finders May 2020. arXiv:1805.12042

  19. Pan, V.Y., Kim, W., Luan, Q., Zaderman, V.: Faster Numerical Univariate Polynomial Root-finding by means of subdivision iterations. To appear. In: Boulier, F., England, M., T.M. Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS. Springer Nature, Switzerland (2020)

    Google Scholar 

  20. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. Complex. 3(2), 90–113 (1987). https://doi.org/10.1016/0885-064X(87)90022-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Schönhage, A.: The Fundamental Theorem of Algebra in Terms of Computational Complexity. Math. Dept., Univ. Tübingen, Tübingen, Germany (1982)

    Google Scholar 

  22. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamentalsatz der Algebra und Grundlagen der Mathematik. Mathematische Zeitschrift, 20, 131–151 (1924)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by NSF Grants CCF–1563942 and CCF–1733834 and by PSC CUNY Award 69813 00 48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Y. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, V.Y. (2020). Acceleration of Subdivision Root-Finding for Sparse Polynomials. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics