Abstract
Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. A recent front-running algorithm relies on subdivision iterations. Already its initial implementation of 2018 has competed for user’s choice for root-finding in a region that contains a small number of roots. Recently, we significantly accelerated the basic blocks of these iterations, namely root-counting and exclusion tests. In [18], we solidified this approach and made our acceleration dramatic in the case of sparse polynomials and other ones defined by a black box for their fast evaluation. Our techniques are novel and should be of independent interest. In the present paper and its companion [19], we expose a substantial part of that work.
This research has been supported by NSF Grants CCF–1563942 and CCF–1733834 and PSC CUNY Award 69813 00 48.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
One can slightly strengthen our estimates based on the observation that \(|\widehat{p}_0|^2\) and \(||\widehat{\mathbf{p}}_1||^2\) are \(\chi ^2\)-functions of dimension 1 and \(q-1\), respectively.
References
Baur, W., Strassen, V.: On the complexity of partial derivatives. Theor. Comput. Sci. 22, 317–330 (1983)
Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration. J. Symbolic Comput. 86, 51–96 (2018) Procs. version, In: ISSAC 2016, pp. 71–78. ACM Press, New York (2016) 10.1145/2930889.2930939 https://doi.org/10.1016/j.jsc.2017.03.009
Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms 23, 127–173 (2000). https://doi.org/10.1023/A:1019199917103
Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014). https://doi.org/10.1016/j.cam.2013.04.037
Henrici, P.: Applied and Computational Complex Analysis, vol. 1 : Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)
Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra. Wiley, New York (1969)
Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math. Mon. 66, 464–466 (1959). https://doi.org/10.2307/2310626
Imbach, R., Pan, V.Y.: Polynomial root clustering and explicit deflation. In: D. Salmanig, D. et al. (eds.) Mathematical Aspects of Computer and Information Sciences (MACIS 2019), LNCS, vol. 11989, pp. 1–16. Springer Nature Switzerland AG 2020, Chapter No: 11, Chapter arXiv:1906.04920 (11 Jun 2019) ) https://doi.org/10.1007/978-3-030-43120-4_11
Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In: Proceedings of ACM-SIGSAM ISSAC ’20, pp. 249–256, July 20–23, 2020, Kalamata, Greece, ACM Press, New York (2020). ACM ISBN 978-1-4503-7100-1/20/07 https://doi.org/10.1145/3373207.3403979
Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_28
Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials ... and now for real! In: Internernational Symposium Symbolic Algebraic Computation (ISSAC 2016), pp. 301–310. ACM Press, New York (2016) https://doi.org/10.1145/2930889.2930937
Linnainmaa, S.: Taylor Expansion of the Accumulated Rounding Errors. BIT 16, 146–160 (1976)
Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proceeding 27th Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 741–750. ACM Press, New York (1995) https://doi.org/10.1145/225058.225292
Pan, V.Y.: Approximation of complex polynomial zeros: modified Quad-tree (Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–264 (2000). https://doi.org/10.1006/jcom.1999
Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001) https://doi.org/10.1007/978-1-4612-0129-8
Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002). https://doi.org/10.1006/jsco.2002.0531
Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_26
Pan, V.Y.: New Acceleration of Nearly Optimal Univariate Polynomial Root-finders May 2020. arXiv:1805.12042
Pan, V.Y., Kim, W., Luan, Q., Zaderman, V.: Faster Numerical Univariate Polynomial Root-finding by means of subdivision iterations. To appear. In: Boulier, F., England, M., T.M. Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS. Springer Nature, Switzerland (2020)
Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. Complex. 3(2), 90–113 (1987). https://doi.org/10.1016/0885-064X(87)90022-7
Schönhage, A.: The Fundamental Theorem of Algebra in Terms of Computational Complexity. Math. Dept., Univ. Tübingen, Tübingen, Germany (1982)
Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamentalsatz der Algebra und Grundlagen der Mathematik. Mathematische Zeitschrift, 20, 131–151 (1924)
Acknowledgments
This research has been supported by NSF Grants CCF–1563942 and CCF–1733834 and by PSC CUNY Award 69813 00 48.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pan, V.Y. (2020). Acceleration of Subdivision Root-Finding for Sparse Polynomials. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-60026-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60025-9
Online ISBN: 978-3-030-60026-6
eBook Packages: Computer ScienceComputer Science (R0)