Advertisement

Contact Linearizability of Scalar Ordinary Differential Equations of Arbitrary Order

  • Yang Liu
  • Dmitry LyakhovEmail author
  • Dominik L. Michels
Conference paper
  • 140 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12291)

Abstract

We consider the problem of the exact linearization of scalar nonlinear ordinary differential equations by contact transformations. This contribution is extending the previous work by Lyakhov, Gerdt, and Michels addressing linearizability by means of point transformations. We have restricted ourselves to quasi-linear equations solved for the highest derivative with a rational dependence on the occurring variables. As in the case of point transformations, our algorithm is based on simple operations on Lie algebras such as computing the derived algebra and the dimension of the symmetry algebra. The linearization test is an efficient algorithmic procedure while finding the linearization transformation requires the computation of at least one solution of the corresponding system of the Bluman-Kumei equation.

Keywords

Contact symmetry Differential Thomas decomposition Exact linearization Nonlinear ordinary differential equations Symbolic computation 

Notes

Acknowledgments

This work has been funded by the King Abdullah University of Science and Technology (KAUST baseline funding). The authors are grateful to Peter Olver for helpful discussions and to the anonymous reviewers for comments that led to improvement of the paper.

References

  1. 1.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ibragimov, N., Sergey Meleshko, S.: Linearization of third-order ordinary differential equations by point and contact transformations. J. Math. Anal. Appl. 308, 266–289 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lange-Hegermann, M.: The differential counting polynomial. Found. Comput. Math. 18, 291–308 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten. III. Archiv for Matematik og Naturvidenskab, vol. 8, 4, pp. 371–458 (1883). Reprinted in Lie’s Gesammelte Abhandlungen, paper XIY, vol. 5, pp. 362–427 (1924)Google Scholar
  5. 5.
    Lie, S.: Vorlesungen über kontinuierliche Gruppen mit geometrischen und anderen Anwendungen. Bearbeitet und herausgegeben von Dr. G. Schefferes, Teubner, Leipzig (1883)Google Scholar
  6. 6.
    Lisle, I., Tracy Huang, T.: Algorithmic calculus for Lie determining systems. J. Symb. Comput. 79, 482–498 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lyakhov, D.A., Gerdt, V.P., Michels, D.L.: Algorithmic verification of linearizability for ordinary Ddifferential equations. In: Burr, M. (ed.) Proceedings 42nd International Symposium on Symbolic and Algebraic Computation. ISSAC’2017, New York, pp. 285–292. ACM (2017)Google Scholar
  8. 8.
    Lyakhov, D.A., Gerdt, V.P., Michels, D.L.: On the algorithmic linearizability of nonlinear ordinary differential equations. J. Symb. Comput. 98, 3–22 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mahomed, F., Peter Leach, P.: Symmetry Lie algebra of \(n\)th order ordinary differential equations. J. Math. Anal. Appl. 151(1), 80–107 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mohammadi, Z., Reid, G., Tracy Huang, T.: Introduction of the MapDE algorithm for determination of mappings relating differential equations. In: Proceedings 2019 International Symposium on Symbolic and Algebraic Computation, New York, pp. 331–338. ACM (2019)Google Scholar
  11. 11.
    Mohammadi, Z., Reid, G., Huang, T.: Extensions of the MapDE algorithm for mappings relating differential equations (2019). arXiv preprint arXiv:1903.03727
  12. 12.
    Mohammadi, Z., Reid, G.J., Huang, S.-L.T.: The Lie algebra of vector fields package with applications to mappings of differential equations. In: Gerhard, J., Kotsireas, I. (eds.) MC 2019. CCIS, vol. 1125, pp. 337–340. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-41258-6_27
  13. 13.
    Olver, P.: Equivalence, Invariance and Symmetry. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  14. 14.
    Reid, G.: Finding abstract Lie symmetry algebras of differential equations without integrating determining equations. Eur. J. Appl. Math. 2(04), 319–340 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11445-3CrossRefzbMATHGoogle Scholar
  16. 16.
    Seiler, W.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Soh, C., Mahomed, F.: Contact symmetry algebras of scalar ordinary differential equations. Nonlinear Dyn. 28, 213–230 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Suksern, S., Ibragimov, N., Meleshko, S.: Criteria for fourth-order ordinary differential equations to be linearizable by contact transformations. Commun. Nonlinear Sci. Numer. Simul. 14, 266–289 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Svirshchevskii, S.: Lie-Bäcklund symmetries of linear ODEs and generalized separation of variables in nonlinear equations. Phys. Lett. A 199, 344–348 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yumaguzhin, V.: Classification of 3rd order linear ODE up to equivalence. Differ. Geom. Appl. 6(4), 343–350 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Visual Computing CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations