Skip to main content

A Scene Classification Approach for Augmented Reality Devices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12428))

Abstract

Augmented Reality (AR) technology can overlay digital content over the physical world to enhance the user’s interaction with the real-world. The increasing number of devices for this purpose, such as Microsoft HoloLens, MagicLeap, Google Glass, allows to AR an immensity of applications. A critical task to make the AR devices more useful to users is the scene/environment understanding because this can avoid the device of mapping elements that were previously mapped and customized by the user. In this direction, we propose a scene classification approach for AR devices which has two components: i) an AR device that captures images, and ii) a remote server to perform scene classification. Four methods for scene classification, which utilize convolutional neural networks, support vector machine and transfer learning are proposed and evaluated. Experiments conducted using real data from an indoor office environment and Microsoft HoloLens AR device shows that the proposed AR scene classification approach can reach up to \(99\%\) of accuracy, even with similar texture information across scenes.

This work is partially supported by Sidia institute of science and technology, and Samsung Eletrônica da Amazônia Ltda, under the auspice of the Brazilian informatics law no 8.387/91.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Unity-Technologies.

  2. 2.

    https://onnx.ai/.

  3. 3.

    https://pypi.org/project/tornado/3.2.1/.

  4. 4.

    http://www.sidia.com.

References

  1. Berger, A., Vokalova, A., Maly, F., Poulova, P.: Google glass used as assistive technology its utilization for blind and visually impaired people. In: Younas, M., Awan, I., Holubova, I. (eds.) MobiWIS 2017. LNCS, vol. 10486, pp. 70–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65515-4_6

    Chapter  Google Scholar 

  2. Andujar, J.M., Mejias, A., Marquez, M.A.: Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. IEEE Trans. Educ. 54(3), 492–500 (2011). https://doi.org/10.1109/TE.2010.2085047

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Bichlmeier, C., Ockert, B., Heining, S.M., Ahmadi, A., Navab, N.: Stepping into the operating theater: ARAV - augmented reality aided vertebroplasty. In: 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 165–166, September 2008. https://doi.org/10.1109/ISMAR.2008.4637348

  5. Evans, G., Miller, J., Pena, M.I., MacAllister, A., Winer, E.: Evaluating the Microsoft HoloLens through an augmented reality assembly application. In: Degraded Environments: Sensing, Processing, and Display 2017, vol. 10197, p. 101970V. International Society for Optics and Photonics (2017)

    Google Scholar 

  6. Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Visual. Comput. Graph. 23(6), 1706–1724 (2017). https://doi.org/10.1109/TVCG.2016.2543720

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  8. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732, June 2014. https://doi.org/10.1109/CVPR.2014.223

  9. Khurshid, A.: Adaptive face tracking based on online learning (2018)

    Google Scholar 

  10. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234, November 2007. https://doi.org/10.1109/ISMAR.2007.4538852

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Liu, S., Tian, G.: An indoor scene classification method for service robot based on CNN feature. J. Robot. 2019, 1–12 (2019). https://doi.org/10.1155/2019/8591035

    Article  Google Scholar 

  13. Mann, S.: Google eye, supplemental material for through the glass, lightly. IEEE Technol. Soc. Mag. 31(3), 10–14 (2012)

    Article  Google Scholar 

  14. Natsume, S.G.: Virtual reality headset. US Patent Application 29/527,040, 07 June 2016

    Google Scholar 

  15. Niu, J., Bu, X., Qian, K., Li, Z.: An indoor scene recognition method combining global and saliency region features. Robot 37(1), 122–128 (2015)

    Google Scholar 

  16. Pai, H.: An imitation of 3D projection mapping using augmented reality and shader effects. In: 2016 International Conference on Applied System Innovation (ICASI), pp. 1–4, May 2016. https://doi.org/10.1109/ICASI.2016.7539879

  17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  18. Pirri, F.: Indoor environment classification and perceptual matching. In: KR, pp. 73–84 (2004)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Santos, D., Lopez-Lopez, E., Pardo, X.M., Iglesias, R., Barro, S., Fdez-Vidal, X.R.: Robust and fast scene recognition in robotics through the automatic identification of meaningful images. Sensors 19(18), 4024 (2019)

    Article  Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015. https://doi.org/10.1109/CVPR.2015.7298594

  22. Wang, L., Guo, S., Huang, W., Xiong, Y., Qiao, Y.: Knowledge guided disambiguation for large-scale scene classification with multi-resolution CNNs. IEEE Trans. Image Proc. 26(4), 2055–2068 (2017)

    Article  MathSciNet  Google Scholar 

  23. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  24. Wu, P., Li, Y., Yang, F., Kong, L., Hou, Z.: A CLM-based method of indoor affordance areas classification for service robots. Jiqiren/Robot 40(2), 188–194 (2018)

    Google Scholar 

  25. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasim Khurshid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khurshid, A., Cleger, S., Grunitzki, R. (2020). A Scene Classification Approach for Augmented Reality Devices. In: Stephanidis, C., Chen, J.Y.C., Fragomeni, G. (eds) HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality. HCII 2020. Lecture Notes in Computer Science(), vol 12428. Springer, Cham. https://doi.org/10.1007/978-3-030-59990-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59990-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59989-8

  • Online ISBN: 978-3-030-59990-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics