Skip to main content

Static and Dynamic Mechanical Characterization of a Spark Plasma Sintered B6O–B4C Composite

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

The microstructure and mechanical properties of a 70 wt.% B6O–30 wt.% B4C composite are compared to a monolithic B6O, both prepared by spark plasma sintering (SPS). Optical and scanning electron micrographs showed significant phase segregation in the composite material along with extensive porosity in regions containing larger amounts of B6O. Raman spectroscopy and energy dispersive spectroscopy (EDS) indicated the presence of distinct B4C-dominant and B6O-dominant phases as well as near-homogeneous matrix interphase. The porous structure of the B6O resulted in a lower hardness of the B6O-dominant phase (11.3 GPa) and matrix interphase (16.7 GPa) as compared to the B4C-dominant phase (29.8 GPa) and the monolithic B6O sample (34.3 GPa). Contrary to theoretical predictions made elsewhere in the literature, the current mechanical testing of both samples indicated no improvement in hardness or compressive strength in the composite material as compared to the monolithic B6O material; however, the incomplete sintering and resulting porosity in the B6O phase of the composite had significant deleterious effects on its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cselle, T., Barimani, A.: Today’s applications and future developments of coatings for drills and rotating cutting tools. Surf. Coatings Technol. 76–77, 712–718 (1995)

    Article  Google Scholar 

  2. Yamamoto, T., Olsson, M., Hogmark, S.: Three-body abrasive wear of ceramic materials. Wear. 174, 21–31 (1994)

    Article  Google Scholar 

  3. Albert, B., Hillebrecht, H.: Boron: elementary challenge for experimenters and theoreticians. Angew. Chemie Int. Ed. 48, 8640–8668 (2009)

    Article  Google Scholar 

  4. Berman, R., Thewlis, J.: The graphite-diamond equilibrium. Nature. 176, 834–836 (1955)

    Article  Google Scholar 

  5. Klages, C.-P., Fryda, M., Matthée, T., Schäfer, L., Dimigen, H.: Diamond coatings and cBN coatings for tools. Int. J. Refract. Met. Hard Mater. 16, 171–176 (1998)

    Article  Google Scholar 

  6. Lundström, T., Andreev, Y.G.: Superhard boron-rich borides and studies of the BCN system. Mater. Sci. Eng. A. 209, 16–22 (2002)

    Article  Google Scholar 

  7. Ghosh, D., Subhash, G., Sudarshan, T.S., Radhakrishnan, R., Gao, X.L.: Dynamic indentation response of fine-grained boron carbide. J. Am. Ceram. Soc. 90, 1850–1857 (2007)

    Article  Google Scholar 

  8. Ghosh, D., Subhash, G., Zheng, J.Q., Halls, V.: Influence of stress state and strain rate on structural amorphization in boron carbide. J. Appl. Phys. 111 (2012)

    Google Scholar 

  9. Grady, D.E.: Shock-wave strength properties of boron carbide and silicon carbide. Le J. Phys. IV. 04, C8–385–C8–391 (1994)

    Google Scholar 

  10. Mutsuddy, B.C.: Mechanical properties of injection molded ceramics. Powder Metall. Int. 19, 43–45 (1987)

    Google Scholar 

  11. Thévenot, F.: Boron carbide—a comprehensive review. J. Eur. Ceram. Soc. 6(4), 205–225 (1990). https://doi.org/10.1016/0955-2219(90)90048-K

  12. Yang, L., Min, G., Yu, H., Han, J., Paderno, Y.B.: Densification and mechanical properties of CaB6 with nickel as a sintering aid. Ceram. Int. 31, 271–276 (2005)

    Article  Google Scholar 

  13. Yakel, H.L.: The crystal structure of a boron-rich boron carbide. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 31, 1797–1806 (1975)

    Article  Google Scholar 

  14. Suri, A.K., Subramanian, C., Sonber, J.K., Murthy, T.S.R.C.: Synthesis and consolidation of boron carbide: a review. Int. Mater. Rev. 55, 4–40 (2010)

    Article  Google Scholar 

  15. Werheit, H.: Are there bipolarons in icosahedral boron-rich solids? J. Phys. Condens. Matter. 19, 186207 (2007)

    Article  Google Scholar 

  16. Vast, N., Sjakste, J., Betranhandy, E.: Boron carbides from first principles. J. Phys. Conf. Ser. 176, 012002 (2009)

    Article  Google Scholar 

  17. Fanchini, G., McCauley, J.W., Chhowalla, M.: Behavior of disordered boron carbide under stress. Phys. Rev. Lett. 97, 035502 (2006)

    Article  Google Scholar 

  18. Mauri, F., Vast, N., Pickard, C.J.: Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra. Phys. Rev. Lett. 87, 855061–855064 (2001)

    Article  Google Scholar 

  19. Kunka, C., Awasthi, A., Subhash, G.: Crystallographic and spectral equivalence of boron-carbide polymorphs. Scr. Mater. 122, 82–85 (2016)

    Article  Google Scholar 

  20. Domnich, V., Reynaud, S., Haber, R.A., Chhowalla, M.: Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011)

    Article  Google Scholar 

  21. Awasthi, A.P., Subhash, G.: High-pressure deformation and amorphization in boron carbide. J. Appl. Phys. 125, 215901 (2019)

    Article  Google Scholar 

  22. Xie, K.Y., et al.: Breaking the icosahedra in boron carbide. Proc. Natl. Acad. Sci. 113, 12012–12016 (2016)

    Article  Google Scholar 

  23. Chen, M.: Shock-induced localized amorphization in boron carbide. Science (80). 299, 1563–1566 (2003)

    Article  Google Scholar 

  24. Grady, D.E.: Hugoniot equation of state and dynamic strength of boron carbide. J. Appl. Phys. 117, 165904 (2015)

    Article  Google Scholar 

  25. Parsard, G., Subhash, G., Jannotti, P.: Amorphization-induced volume change and residual stresses in boron carbide. J. Am. Ceram. Soc. 101, 2606–2615 (2018)

    Article  Google Scholar 

  26. Aryal, S., Rulis, P., Ching, W.Y.: Mechanism for amorphization of boron carbide B4C under uniaxial compression. Phys. Rev. B. 84, 184112 (2011)

    Article  Google Scholar 

  27. Domnich, V., Gogotsi, Y., Trenary, M., Tanaka, T.: Nanoindentation and Raman spectroscopy studies of boron carbide single crystals. Appl. Phys. Lett. 81, 3783–3785 (2002)

    Article  Google Scholar 

  28. Bavdekar, S., Parsard, G., Subhash, G., Satapathy, S.: An improved dynamic expanding cavity model for high-pressure and high-strain rate response of ceramics. Int. J. Solids Struct. 125, 77–88 (2017)

    Article  Google Scholar 

  29. Bourne, N.K.: On the failure and dynamic performance of materials. Exp. Mech. 52, 153–159 (2012)

    Article  Google Scholar 

  30. Bourne, N.K.: The relation of failure under 1D shock to the ballistic performance of brittle materials. Int. J. Impact Eng. 35, 674–683 (2008)

    Article  Google Scholar 

  31. Vogler, T.J., Reinhart, W.D., Chhabildas, L.C.: Dynamic behavior of boron carbide. J. Appl. Phys. 95, 4173–4183 (2004)

    Article  Google Scholar 

  32. Kolel-Veetila, M.K., Gamachea, R.M., Bernsteinb, N.L., Goswamib, R., Qadrib, S.B., Fearsa, K.P., Millera, J.B., Glaser, E.R., Keller, T.M.: Substitution of silicon within the rhombohedral boron carbide (B4C) crystal lattice through high-energy ball-milling. J. Mater. Chem. 1, 3777 (2013)

    Google Scholar 

  33. DeVries, M., Subhash, G.: Influence of carbon nanotubes as secondary phase addition on the mechanical properties and amorphization of boron carbide. J. Eur. Ceram. Soc. 39, 1974–1983 (2019)

    Article  Google Scholar 

  34. Itoh, H., Maekawa, I., Iwahara, H.: Microstructure and mechanical properties of B6O-B4C sintered composites prepared under high pressure. J. Mater. Sci. 35, 693–698 (2000)

    Article  Google Scholar 

  35. Proctor, J.E., et al.: Stabilization of boron carbide via silicon doping. J. Phys. Condens. Matter. 27 (2014)

    Google Scholar 

  36. Music, D., Kreissig, U., Czigány, Z., Helmersson, U., Schneider, J.M.: Elastic modulus-density relationship for amorphous boron suboxide thin films. Appl. Phys. A Mater. Sci. Process. 76, 269–271 (2003)

    Article  Google Scholar 

  37. Herrmann, M., et al.: Boron suboxide ultrahard materials. Int. J. Refract. Met. Hard Mater. 39, 53–60 (2013)

    Article  Google Scholar 

  38. Kobayashi, M., Higashi, I., Brodhag, C., Thévenot, F.: Structure of B6O boron-suboxide by Rietveld refinement. J. Mater. Sci. 28, 2129–2134 (1993)

    Article  Google Scholar 

  39. An, Q., Goddard, W.A.: Boron suboxide and boron subphosphide crystals: hard ceramics that shear without brittle failure. Chem. Mater. 27, 2855–2860 (2015)

    Article  Google Scholar 

  40. He, D., et al.: Boron suboxide: as hard as cubic boron nitride. Appl. Phys. Lett. 81, 643–645 (2002)

    Article  Google Scholar 

  41. Kunka, C., et al.: Nanotwinning and amorphization of boron suboxide. Acta Mater. 147, 195–202 (2018)

    Article  Google Scholar 

  42. Badzian, A.R.: Superhard material comparable in hardness to diamond. Appl. Phys. Lett. 53, 2495–2497 (1988)

    Article  Google Scholar 

  43. Solodkyi, I., et al.: Synthesis of B6O powder and spark plasma sintering of B6O and B6O-B4C ceramics. J. Ceram. Soc. Japan. 121, 950–955 (2013)

    Article  Google Scholar 

  44. An, Q., et al.: nanotwinned boron suboxide (B6O): new ground state of B6O. Nano Lett. 16, 4236–4242 (2016)

    Article  Google Scholar 

  45. An, Q., et al.: Nucleation of amorphous shear bands at nanotwins in boron suboxide. Nat. Commun. 7 (2016)

    Google Scholar 

  46. Tang, B., An, Q., Goddard, W.A.: Improved ductility of boron carbide by microalloying with boron suboxide. J. Phys. Chem. C. 119, 24649–24656 (2015)

    Article  Google Scholar 

  47. Kurakevych, O.O., Solozhenko, V.L.: Experimental study and critical review of structural, thermodynamic and mechanical properties of superhard refractory boron suboxide B6O. J. Superhard Mater. 33, 421–428 (2011)

    Article  Google Scholar 

  48. Music, D., Schneider, J.M.: Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics. J. Phys. Condens. Matter. 20, 195203 (2008)

    Article  Google Scholar 

  49. Lundström, T.: structure and bulk modulus of high-strength boron compounds. J. Solid State Chem. 133, 88–92 (1997)

    Article  Google Scholar 

  50. Petuskey, W.T., et al.: High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O). Chem. Mater. 10, 1530–1537 (2002)

    Google Scholar 

  51. Lu, Y.P., He, D.W.: Structure and elastic properties of boron suboxide at 240 GPa. J. Appl. Phys. 105, 083540 (2009)

    Article  Google Scholar 

  52. Giuntini, D., Raethel, J., Herrmann, M., Michaelis, A., Olevsky, E.A.: Advancement of tooling for spark plasma sintering. J. Am. Ceram. Soc. 98, 3529–3537 (2015)

    Article  Google Scholar 

  53. Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. 287, 183–188 (2000)

    Article  Google Scholar 

  54. Frei, J.M., Anselmi-Tamburini, U., Munir, Z.A.: Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J. Appl. Phys. 101, 114914 (2007)

    Article  Google Scholar 

  55. Subhash, G.: Dynamic indentation testing. Mech. Test. Eval. 8, 519–529 (2018)

    Google Scholar 

  56. DeVries, M., et al.: Rate-dependent mechanical behavior and amorphization of ultrafine-grained boron carbide. J. Am. Ceram. Soc. 99, 3398–3405 (2016)

    Article  Google Scholar 

  57. DeVries, M., et al.: Quasi-static and dynamic response of 3D-printed alumina. J. Eur. Ceram. Soc. 38, 3305–3316 (2018)

    Article  Google Scholar 

  58. Pittari, J., et al.: The rate-dependent response of pressureless-sintered and reaction-bonded silicon carbide-based ceramics. Int. J. Appl. Ceram. Technol. 12, E207–E216 (2015)

    Article  Google Scholar 

  59. Madhav Reddy, K., et al.: Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat. Commun. 3, 1052 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Department of the Army Contract no. W91CRB-16-C-0035 and the Army Research Office under contract no. W911NF-14-1-0230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghatu Subhash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghaffari, K., Bavdekar, S., Subhash, G. (2021). Static and Dynamic Mechanical Characterization of a Spark Plasma Sintered B6O–B4C Composite. In: Lamberson, L., Mates, S., Eliasson, V. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59947-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59947-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59946-1

  • Online ISBN: 978-3-030-59947-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics