Skip to main content

Nutritional Disorders of the Hair and Their Management

  • 553 Accesses

Abstract

The quantity and quality of hair are closely related to the nutritional state of an individual. In instances of protein and calorie malnutrition, deficiency of essential amino acids, of trace elements, and of vitamins, hair growth and pigmentation may be perturbed. The effects of nutrition on hair growth and pigmentation have been recognized from observations in rare inborn errors of metabolism of copper (Menkes kinky hair syndrome), zinc (acrodermatitis enteropathica), biotin (biotinidase and holocarboxylase synthetase deficiency), and amino acids (homocystinuria, Hartnup disease, phenylketonuria, and methionine malabsorption syndrome), in specific acquired deficiency disorders, and from the respective supplementation studies. All vitamins were identified by 1948, ushering in a half century of discovery focused on single-nutrient-deficiency diseases. The first half of the twentieth century witnessed the identification and synthesis of many of the known essential vitamins and minerals and their use to prevent and treat nutritional deficiency-related diseases, specifically protein-calorie malnutrition, deficiencies of biotin, vitamin C, vitamin B12, niacin, essential fatty acids, iron, zinc, copper, selenium, and vitamin D. Accelerating economic development and modernization of agricultural, food processing, and food formulation techniques continued to reduce single-nutrient-deficiency diseases globally. In response, nutrition science shifted to the research on the role of nutrition in more complex conditions, such as gluten sensitivity, obesity, bariatric surgery, anorexia and bulimia, alcoholism, aging, and the oncologic patient. Additional complexity may arise in nutritional recommendations for general well-being versus treatment of specific conditions. Recognition of complexity is a key lesson of the past. Initial observations lead to reasonable, simplified theories that achieve certain practical benefits, which are then inevitably advanced by new knowledge and recognition of ever-increasing complexity.

Keywords

  • Inborn errors of metabolism
  • Protein-calorie malnutrition
  • Acquired single-nutrient-deficiency disorders
  • Multiple-nutritional-deficiency disorders
  • Complex nutritional disorders
  • Gluten sensitivity
  • Obesity and bariatric surgery
  • Anorexia and bulimia
  • Alcoholism
  • Aging
  • The oncologic patient

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-59920-1_5
  • Chapter length: 113 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-59920-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34
Fig. 5.35

References

  1. Androutsos G, Karamanou M, Stefanadis C. William Harvey (1578-1657): discoverer of blood circulation. Hellenic J Cardiol. 2012;53:6–9.

    PubMed  Google Scholar 

  2. Dronamraju K. Profiles in genetics: Archibald E. Garrod (1857-1936). Am J Hum Genet. 1992;1992(5):216–9.

    Google Scholar 

  3. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics. 1962;29:764–79.

    CAS  PubMed  Google Scholar 

  4. de Bie P, Muller P, Wijmenga C, Klomp LW. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet. 2007;44:673–88.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  5. Ivo S, Ralf D, Mercer Julian FB. Chapter 11. Copper: effects of deficiency and overload. In: Sigel A, Sigel H, Sigel RKO, editors. Interrelations between essential metal ions and human diseases. Metal ions in life sciences, vol. 13. Dordrecht: Springer; 2013. p. 359–87.

    CrossRef  Google Scholar 

  6. Kaler SG, Gallo LK, Proud VK, Percy AK, Mark Y, Segal NA, Goldstein DS, Holmes CS, Gahl WA. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet. 1994;8:195–202.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Tønnesen T, Kleijer WJ, Horn N. Incidence of Menkes disease. Hum Genet. 1991;86:408–10.

    PubMed  CrossRef  Google Scholar 

  8. Kaler SG, Holmes CS, Goldstein DS. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358:605–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Moore CM, Howell RR. Ectodermal manifestations in Menkes disease. Clin Genet. 1985;28:532–40.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Kumar V, Abbas AK, Fausto N. Robbins & Cotran. Pathologic basis of disease. 7th ed. Philadelphia: Elsevier; 2008. p. 16.

    Google Scholar 

  11. Lapointe M. Iron supplementation in the intensive care unit: when, how much, and by what route? Crit Care. 2004;8:S37–41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56:115–20.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson’s disease. Lancet. 2007;369:397–408.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Roberts EA, Schilsky ML. A practice guideline on Wilson disease. Hepatology. 2003;37:1475–92.

    PubMed  CrossRef  Google Scholar 

  15. Kuruvilla A, Joseph S. Face of the giant panda sign in Wilson’s disease: revisited. Neurol India. 2000;48:395–6.

    CAS  PubMed  Google Scholar 

  16. Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Bernhard D, Rossmann A, Wick G. Metals in cigarette smoke. IUBMB Life. 2005;57:805–9.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Sehgal VN, Jain S. Acrodermatitis enteropathica. Clin Dermatol. 2000;18:745–8.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol. 2015;29:47–62.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ciampo IRLD, Sawamura R, Ciampo LAD, Fernandes MIM. Acrodermatitis enteropathica: clinical manifestations and pediatric diagnosis. Rev Paul Pediatr. 2018;36:238–41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Ranugha P, Sethi P, Shastry V. Acrodermatitis enteropathica: the need for sustained high dose zinc supplementation. Dermatol Online J. 2018;24:12.

    Google Scholar 

  22. Secor McVoy JRS, Levy HL, Lawler M, Schmidt MA, Ebers DD, Hart S, Pettit DD, Blitzer MG, Wolf B. Partial biotinidase deficiency: clinical and biochemical features. J Pediatr. 1990;116:78–83.

    CrossRef  Google Scholar 

  23. Wolf B, Norrgard K, Pomponio RJ, Mock DM, Secor Mcvoy JR, Fleischhauer K, Shapiro S, Blitzer MG, Hymes J. Profound biotinidase deficiency in two asymptomatic adults. Am J Med Genet. 1997;73:5–9.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Forman DT, Bankson DD, Highsmith WE Jr. Neonatal screening for biotinidase deficiency. Ann Clin Lab Sci. 1992;22:144–54.

    CAS  PubMed  Google Scholar 

  25. Porta F, Pagliardini V, Celestino I, Pavanello E, Pagliardini S, Guardamagna O, Ponzone A, Spada M. Neonatal screening for biotinidase deficiency: a 30-year single center experience. Mol Genet Metab Rep. 2017;13:80–2.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Wolf B. Worldwide survey of neonatal screening for biotinidase deficiency. J Inherit Metab Dis. 1991;14:923–7.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Michalski AJ, Berry GT, Segal S. Holocarboxylase synthetase deficiency: 9-year follow-up of a patient on chronic biotin therapy and a review of the literature. J Inherit Metab Dis. 1989;12:312–6.

    CAS  PubMed  CrossRef  Google Scholar 

  28. McCoy RH, Meyer CE, Rose WC. Feeding experiments with mixtures of highly purified amino acids. VIII. Isolation and identification of a new essential amino acid. J Biol Chem. 1935;112:283–302.

    CAS  Google Scholar 

  29. Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect. 2012;120:A110–6.

    PubMed  PubMed Central  Google Scholar 

  30. Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Biol Sci. 2016;283(1823):20152397.

    PubMed  PubMed Central  Google Scholar 

  31. Holtcamp W. Shark fin consumption may expose people to neurotoxic BMAA. Environ Health Perspect. 2012;120:A191.

    PubMed  PubMed Central  Google Scholar 

  32. Wiest LG, Lutz P, Jung EG, Paweletz N. Morphological and biochemical investigations of hairs in inborn errors of amino acid metabolism (author’s transl). Arch Dermatol Res. 1976;256:53–65.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Morris AA, Kožich V, Santra S, Andria G, Ben-Omran TI, Chakrapani AB, Crushell E, Henderson MJ, Hochuli M, Huemer M, Janssen MC, Maillot F, Mayne PD, McNulty J, Morrison TM, Ogier H, O’Sullivan S, Pavlíková M, de Almeida IT, Terry A, Yap S, Blom HJ, Chapman KA. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40:49–74.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Cavka M, Kelava T. Homocystinuria, a possible solution of the Akhenaten’s mystery. Coll Antropol. 2010;34:255–8.

    PubMed  Google Scholar 

  35. Freud S. The standard edition of the complete psychological works of sigmund Freud, volume XXIII (1937–1939), “Moses and monotheism”. London: Hogarth Press; 1964.

    Google Scholar 

  36. Dever WG. What remains of the house that Albright built? In: Wright GE, Cross FM, Campbell EF, Filson FV, editors. The biblical archaeologist, American Schools of Oriental Research, vol. 56: Scholars Press; 1993. p. 25–35, No. 1, p. 33.

    Google Scholar 

  37. Dever WG. What did the biblical writers know and when did they know it? What archeology can tell us about the reality of ancient Israel. Michigan: WM. B. Eerdmans Publishing; 2001. p. 99. ISBN: 978-0-8028-2126-3.

    Google Scholar 

  38. Barber GW, Spaeth GL. The successful treatment of homocystinuria with pyridoxine. J Pediatr. 1969;75:463–78.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Valayannopoulos V, Schiff M, Guffon N, Nadjar Y, García-Cazorla A, Martinez-Pardo Casanova M, Cano A, Couce ML, Dalmau J, Peña-Quintana L, Rigalleau V, Touati G, Aldamiz-Echevarria L, Cathebras P, Eyer D, Brunet D, Damaj L, Dobbelaere D, Gay C, Hiéronimus S, Levrat V, Maillot F. Betaine anhydrous in homocystinuria: results from the RoCH registry. Orphanet J Rare Dis. 2019;4:66.

    CrossRef  Google Scholar 

  40. Milne MD, Crawford MA, Girao CB, Loughridge L. The metabolic disorder of the Hartnup disease. Q J Med. 1961;29:407–21.

    Google Scholar 

  41. Gounelle H, Mitrovic M, Demarne M. On the vitamin B complex content of the hair of normal and pellagrous subjects. Am J Clin Nutr. 1961;9:746–51.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Snyderman SE. The dietary therapy of inherited metabolic disease. Prog Food Nutr Sci. 1975;1:507–30.

    CAS  PubMed  Google Scholar 

  43. Gonzalez J, Willis MS. Ivar Asbjörn Følling. Lab Med. 2010;41:118–9.

    CrossRef  Google Scholar 

  44. Macleod EL, Ney DM. Nutritional management of phenylketonuria. Ann Nestle Eng. 2010;68:58–69.

    PubMed  PubMed Central  Google Scholar 

  45. Michals-Matalon K. Sapropterin dihydrochloride, 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin, in the treatment of phenylketonuria. Expert Opin Investig Drugs. 2008;17:245–51.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med. 2011;13:697–707.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Buck PS. The child who never grew. New York: John Day; 1950.

    Google Scholar 

  48. Smith AJ, Strang LB. An inborn error of metabolism with the urinary excretion of alpha-hydroxy-butyric acid and phenylpyruvic acid. Arch Dis Child. 1958;33:109–13.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Chayet NL. Absorption of amino acids. N Engl J Med. 1965;273:560–1.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Bonafe JL, Pieraggi MT, Abravanel M, Benque A, Abravanel G. Skin, hair and nail changes in a case of citrullinemia with late manifestation. Dermatologica. 1984;168:213–8.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Patel HP, Unis ME. Pili torti in association with citrullinemia and arginine succinic aciduria. J Am Acad Dermatol. 1985;12(1 Pt 2):203–6.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Phillips ME, Barrie H, Cream JJ. Argininosuccinic aciduria with pili torti. J R Soc Med. 1981;74:221–2.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Yazaki M, Hineno A, Matsushima A, Ozawa K, Kishida D, Tazawa K, Fukushima K, Urata K, Ikegami T, Miyagawa S, Ikeda S. First two cases of adult-onset type II citrullinemia successfully treated by deceased-donor liver transplantation in Japan. Hepatol Res. 2012;42:934–9.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Shelley WB, Rawnsley HM. Aminogenic alopecia. Loss of hair associated with argininosuccinic aciduria. Lancet. 1965;2:1327–8.

    CrossRef  Google Scholar 

  55. Bachmann C. Long-term outcome of patients with urea cycle disorders and the question of neonatal screening. Eur J Pediatr. 2003;162:S29–33.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Liu T, Howard RM, Mancini AJ, Weston WL, Paller AS, Drolet BA, Esterly NB, Levy ML, et al. Kwashiorkor in the United States: fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol. 2001;137:630–6.

    CAS  PubMed  Google Scholar 

  57. Badaloo AV, Forrester T, Reid M, Jahoor F. Lipid kinetic differences between children with kwashiorkor and those with marasmus. Am J Clin Nutr. 2006;83:1283–8.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Williams CD, Oxon BM, Lond H. Kwashiorkor: a nutritional disease of children associated with a maize diet. Bull World Health Organ. 1935;81:912–3.

    Google Scholar 

  59. Stanton J. Listening to the Ga: Cicely Williams’ discovery of kwashiorkor on the Gold Coast. Clio Med. 2001;61:149–71.

    CAS  PubMed  Google Scholar 

  60. McLaren DS. Skin in protein energy malnutrition. Arch Dermatol. 1987;123:1674–1676a.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Sims RT. Hair growth in kwashiorkor. Arch Dis Child. 1967;42:397–400.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Wyness LA, McNeill G, Prescott GJ. Trichotillometry: the reliability and practicality of hair pluckability as a method of nutritional assessment. Nutr J. 2007;6:9.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  63. Johnson AA, Latham MC, Roe DA. An evaluation of the use of changes in hair root morphology in the assessment of protein-calorie malnutrition. Am J Clin Nutr. 1976;29:502–11.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Bradfield RB. Hair tissue as a medium for the differential diagnosis of protein-calorie malnutrition: a commentary. J Pediatr. 1974;84:294–6.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Williams CD. Fifty years ago. Archives of diseases in childhood 1933. A nutritional disease of childhood associated with a maize diet. Arch Dis Child. 1983;58:550–60.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. No authors listed. Kwashiorkor. A nutritional disease of children associated with a maize diet by Cicely D. Williams from the Lancet, Nov. 16, 1935, p. 1151. Nutr Rev 1973;31:350–1.

    Google Scholar 

  67. Konotey-Ahulu, Felix. There is nothing mysterious about kwashiorkor. Br Med J 2005. Accessed 28 July 2012

    Google Scholar 

  68. Müller O, Krawinkel M. Malnutrition and health in developing countries. Can Med Assoc J. 2005;173:279–86.

    CrossRef  Google Scholar 

  69. Bradfield RB. Hair tissue in the diagnosis of marasmus and kwashiorkor. J Am Med Womens Assoc. 1973;28:393–4.

    CAS  Google Scholar 

  70. Steinbart JW. Intermediary forms of malnutrition between kwashiorkor and marasmus [article in German]. Monatsschr Kinderheilkd. 1975;123:285–7.

    CAS  PubMed  Google Scholar 

  71. Bergstrom S, Danielson H, Klenberg D, Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J Biol Chem. 1964;239:PC4006–8.

    CAS  Google Scholar 

  72. Lands WE. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992;6:2530–6.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Kuda O. Bioactive metabolites of docosahexaenoic acid (Review). Biochimie. 2017;136:12–20.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Truchetet E, Brändle I, Grosshans E. Skin changes, pathophysiology and therapy in deficiency of essential fatty acids. Z Hautkr. 1988;63:290–301.

    CAS  PubMed  Google Scholar 

  75. Schroeter AL, Tucker SB. Essential fatty acid deficiency. Arch Dermatol. 1978;114:800–1.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Burns-Whitmore B, Froyen E, Heskey C, Parker T, San PG. Alpha-linolenic and linoleic fatty acids in the vegan diet: do they require dietary reference intake/adequate intake special consideration? Nutrients. 2019;11:2365.

    CAS  PubMed Central  CrossRef  Google Scholar 

  77. Le Floc’h C, Cheniti A, Connétable C, Piccardi N, Vincenzi C, Tosti A. Effect of a nutritional supplement on hair loss in women. J Cosmet Dermatol. 2015;14:76–82.

    PubMed  CrossRef  Google Scholar 

  78. Floersheim GL. Treatment of brittle fingernails with biotin. Z Hautkr. 1989;64:41–8.

    CAS  PubMed  Google Scholar 

  79. Colombo VE, Gerber F, Bronhofer M, Floersheim GL. Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopy. J Am Acad Dermatol. 1990;23:1127–32.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Hochman LG, Scher RK, Meyerson MS. Brittle nails: response to daily biotin supplementation. Cutis. 1993;51:303–5.

    CAS  PubMed  Google Scholar 

  81. Iorizzo M, Pazzaglia M, Piraccini B, Tullo S, Tosti A. Brittle nails. J Cosmet Dermatol. 2004;3:138–4.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Floersheim GL. Prüfung der Wirkung von Biotin auf Haarausfall und Haarqualität. Z Hautkr. 1991;67:246–55.

    Google Scholar 

  83. Patel DP, Swink SM, Castelo-Soccio L. A review of the use of biotin for hair loss. Skin Appendage Disord. 2017;3:166–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Piraccini BM, Berardesca E, Fabbrocini G, Micali G, Tosti A. Biotin: overview of the treatment of diseases of cutaneous appendages and of hyperseborrhea. G Ital Dermatol Venereol. 2019;154:557–66.

    PubMed  CrossRef  Google Scholar 

  85. Shelley WB, Shelley ED. Uncombable hair syndrome: observations on response to biotin and occurrence in siblings with ectodermal dysplasia. J Am Acad Dermatol. 1985;13:97–102.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Limat A, Suormala T, Hunziker T, Waelti ER, Braathen LR, Baumgartner R. Proliferation and differentiation of cultured human follicular keratinocytes are not influenced by biotin. Arch Dermatol Res. 1996;288:31–8.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Prendiville JS, Manfredi LN. Skin signs of nutritional disorders. Semin Dermatol. 1992;11:88–97.

    CAS  PubMed  Google Scholar 

  88. György P, Rose CS, Eakin RE, Snell EE, Williams RJ. Egg-white injury as the result of non-absorption or inactivation of biotin. Science. 1941;93:477–8.

    PubMed  CrossRef  Google Scholar 

  89. Subramanya SB, Subramanian VS, Kumar JS, Hoiness R, Said HM. Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanisms. Am J Physiol Gastrointest Liver Physiol. 2011;300:G494–501.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Sealey WM, Teague AM, Stratton SL, Mock DM. Smoking accelerates biotin catabolism in women. Am J Clin Nutr. 2004;80:932–5.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Mock DM, Baswell DL, Baker H, Holman RT, Sweetman L. Biotin deficiency complicating parenteral alimentation: diagnosis, metabolic repercussions, and treatment. J Pediatr. 1985;106:762–9.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Greenway FL, Ingram DK, Ravussin E, Hausmann M, Smith SR, Cox L, Tomayko K, Treadwell BV. Loss of taste responds to high-dose biotin treatment. J Am Coll Nutr. 2011;30:178–81.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Mock DM, Dyken ME. Biotin catabolism is accelerated in adults receiving long-term therapy with anticonvulsants. Neurology. 1997;49:1444–7.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Schulpis KH, Karikas GA, Tjamouranis J, Regoutas S, Tsakiris S. Low serum biotinidase activity in children with valproic acid monotherapy. Epilepsia. 2001;42:1359–62.

    CAS  PubMed  CrossRef  Google Scholar 

  95. Schulpis KH, Georgala S, Papakonstantinou ED, Michas T, Karikas GA. The effect of isotretinoin on biotinidase activity. Skin Pharmacol Appl Skin Physiol. 1999;12:28–33.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Mock DM, Quirk JG, Mock NI. Marginal biotin deficiency during normal pregnancy. Am J Clin Nutr. 2002;75:295–9.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Mock DM. Skin manifestations of biotin deficiency. Semin Dermatol. 1991;10:296–302.

    CAS  PubMed  Google Scholar 

  98. Coulter DL, Beals TF, Allen RJ. Neurotrichosis: hair-shaft abnormalities associated with neurological diseases. Dev Med Child Neurol. 1982;24:634–44.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Seymons K, De Moor A, De Raeve H, Lambert J. Dermatologic signs of biotin deficiency leading to the diagnosis of multiple carboxylase deficiency. Pediatr Dermatol. 2004;21:231–5.

    PubMed  CrossRef  Google Scholar 

  100. Trüeb RM. Serum biotin levels in women complaining of hair loss. Int J Trichology. 2016;8:73–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  101. Said HM. Biotin: biochemical, physiological and clinical aspects. Subcell Biochem. 2012;56:1–19.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Clevidence BA, Marshall MW, Canary JJ. Biotin levels in plasma and urine of heathy adults consuming physiological doses of biotin. Nutr Res. 1988;8:1109–18.

    CAS  CrossRef  Google Scholar 

  103. Bitsch RSI, Hötzel D. Studies on bioavailability of oral biotin doses for humans. Int J Vit Nutr Res. 1989;59:65–71.

    CAS  Google Scholar 

  104. Zempleni JM, Mock DM. Bioavailability of biotin given orally to humans in pharmacologic doses. Am J Clin Nutr. 1999;69:504–8.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Stone I. On the genetic etiology of scurvy. Acta Genet Med Gemellol (Roma). 1966;15:345–50.

    CAS  CrossRef  Google Scholar 

  106. Lind J. A treatise on the scurvy. 3rd ed. G. Pearch and W. Woodfall: London, England; 1772.

    Google Scholar 

  107. Ashhurst J, editor. The international encyclopedia of surgery, vol. 1. New York, NY: William Wood and Co.; 1881. p. 278.

    Google Scholar 

  108. Toler PD. Mankind: the story of all of us. Philadelphia: Running Press; 2012. p. 296. ISBN: 978-0762447176

    Google Scholar 

  109. Milne I. Who was James Lind, and what exactly did he achieve. J R Soc Med. 2012;105:503–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Renzaho AMN. Globalisation, migration and health: challenges and opportunities: World Scientific; 2016. p. 94. ISBN: 978-1-78326-889-4

    Google Scholar 

  111. Hürlimann R, Salomon F. Scurvy—a mistakenly forgotten disease [article in German]. Schweiz Med Wochenschr. 1994;124:1373–80.

    PubMed  Google Scholar 

  112. Agarwal A, Shaharya A, Kumar A, Bhat MS, Mishra M. Scurvy in pediatric age group—a disease often forgotten? J Clin Orthop Trauma. 2015;6:101–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Fuchs J. Vitamins and skin [article in German]. Ther Umsch. 1994;51:489–95.

    CAS  PubMed  Google Scholar 

  114. Lessing JN, LaMotte ED, Moshiri AS, Mark NM. Perifollicular haemorrhage with corkscrew hair due to scurvy. Postgrad Med J. 2015;91:719–20.

    PubMed  CrossRef  Google Scholar 

  115. Hunt A, Harrington D, Robinson S. Vitamin B12 deficiency. BMJ. 2014;349:g5226.

    PubMed  CrossRef  CAS  Google Scholar 

  116. Pawlak R, Parrott SJ, Raj S, Cullum-Dugan D, Lucus D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr Rev. 2013;71:110–7.

    PubMed  CrossRef  Google Scholar 

  117. Miller JW. Proton pump inhibitors, H2-receptor antagonists, metformin, and vitamin B-12 deficiency: clinical implications. Adv Nutr (Bethesda, MD). 2018;9:511S–8S.

    CrossRef  Google Scholar 

  118. Wang H, Li L, Qin LL, Song Y, Vidal-Alaball V, Liu TH. Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev. 2018;3:CD004655.

    PubMed  Google Scholar 

  119. Hunt A, Harrington D, Robinson S. Vitamin B12 deficiency. BMJ. 2014;349:g5226.

    PubMed  CrossRef  CAS  Google Scholar 

  120. Herrmann W, Obeid R. Causes and early diagnosis of vitamin B12 deficiency. Deutsches Arzteblatt international. 2008;105:680–5.

    PubMed  PubMed Central  Google Scholar 

  121. Jarquin Campos A, Risch L, Nydegger U, Wiesner J, Vazquez Van Dyck M, Renz H, Stanga Z, Risch M. Diagnostic accuracy of holotranscobalamin, vitamin B12, methylmalonic acid, and homocysteine in detecting B12 deficiency in a large, mixed patient population. Dis Markers. 2020;2020:7468506.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  122. Dietary Supplement Fact Sheet: Vitamin B12—Health Professional Fact Sheet. National Institutes of Health: Office of Dietary Supplements. 2016-02-11. Archived from the original on 2016-07-27. Accessed 15 July 2016.

    Google Scholar 

  123. Sonthalia S, Priya A, Tobin DJ. Demographic characteristics and association of serum vitamin B12, ferritin and thyroid function with premature canities in indian patients from an urban skin clinic of North India: a retrospective analysis of 71 cases. Indian J Dermatol. 2017;62:304–8.

    PubMed  PubMed Central  Google Scholar 

  124. Capo A, Amerio P. Polyglandular autoimmune syndrome type III with a prevalence of cutaneous features. Clin Exp Dermatol. 2017;42:61–3.

    CAS  PubMed  CrossRef  Google Scholar 

  125. Kumar B, Sharma VK, Sehgal S. Antismooth muscle and antiparietal cell antibodies in Indians with alopecia areata. Int J Dermatol. 1995;34:542–5.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Daly T, Daly K. Telogen effluvium with dysesthesia (TED) has lower B12 levels and may respond to B12 supplementation. J Drugs Dermatol. 2018;17:1236–40.

    PubMed  Google Scholar 

  127. Devalia V, Hamilton MS, Molloy AM. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br J Haematol. 2014;166:496–513.

    CAS  PubMed  CrossRef  Google Scholar 

  128. Holm RP. The corn-skin connection. S D Med. 2009;62:449.

    PubMed  Google Scholar 

  129. Portale S, Sculati M, Stanford FC, Cena H. Pellagra and anorexia nervosa: a case report. Eat Weight Disord. 2019; https://doi.org/10.1007/s40519-019-00781-x. [Epub ahead of print]

  130. Zaki I, Millard L. Pellagra complicating Crohn’s disease. Postgrad Med J. 1995;71:496–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  131. Bilgili SG, Karadag AS, Calka O, Altun F. Isoniazid-induced pellagra. Cutan Ocul Toxicol. 2011;30:317–9.

    CAS  PubMed  CrossRef  Google Scholar 

  132. Bell HK, Poston GJ, Vora J, Wilson NJ. Cutaneous manifestations of the malignant carcinoid syndrome. Br J Dermatol. 2005;152:71–5.

    CAS  PubMed  CrossRef  Google Scholar 

  133. Creamer D. Malnutrition and skin disease in Far East prisoners-of-war in World War II. Clin Exp Dermatol. 2018;43:766–9.

    CAS  PubMed  CrossRef  Google Scholar 

  134. Chaidemenos GC, Mourellou O, Karakatsanis G, Koussidou T, Xenidis E, Charalampidou H, Avgoloupis D. Acute hemorrhagic pellagra in an Albanian refugee. Cutis. 2002;69:96–8.

    PubMed  Google Scholar 

  135. Licata M, Iorio S. What disease did Goethe witness during his journey through the Italian Alps? Was it pellagra or another disease of malnutrition? Nutr Diet. 2018;75:541.

    PubMed  CrossRef  Google Scholar 

  136. Williams AC, Hill LJ. The 4 D’s of pellagra and progress. Int J Tryptophan Res. 2020;13:1178646920910159.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  137. Hegyi J, Schwartz RA, Hegyi V. Pellagra: dermatitis, dementia, and diarrhea. Int J Dermatol. 2004;43:1–5.

    PubMed  CrossRef  Google Scholar 

  138. Spivak JL, Jackson DL. Pellagra: an analysis of 18 patients and a review of the literature. Johns Hopkins Med J. 1977;140:295–309.

    CAS  PubMed  Google Scholar 

  139. World Health Organization (2009). In: Stuart MC, Kouimtzi M, Hill SR (editors). WHO Model Formulary 2008. World Health Organization, pp. 496, 500

    Google Scholar 

  140. Centers for Disease Control (CDC). Iron deficiency–United States, 1999–2000. Morb Mortal Wkly Rep. 2002;51:897–9.

    Google Scholar 

  141. Hard S. Non-anemic iron deficiency as an etiologic factor in diffuse loss of hair of the scalp in women. Acta Derm Venereol. 1963;43:562–9.

    Google Scholar 

  142. Aguilera MC. Diffuse alopecia in women and hyposideremia [article in Spanish]. Actas Dermosifiliogr. 1966;57:169–80.

    Google Scholar 

  143. Rushton DH, Ramsay ID, James KC, Norris MJ, Gilkes JJ. Biochemical and trichological characterization of diffuse alopecia in women. Br J Dermatol. 1990;123:187–97.

    CAS  PubMed  CrossRef  Google Scholar 

  144. Aydingoz I, Ferhanoglu B, Guney O. Does tissue iron status have a role in female alopecia? J Eur Acad Dermatol Venereol. 1999;13:65–7.

    CAS  PubMed  CrossRef  Google Scholar 

  145. Sinclair R. There is no clear association between low serum ferritin and chronic diffuse telogen hair loss. Br J Dermatol. 2002;147:982–4.

    CAS  PubMed  CrossRef  Google Scholar 

  146. Kantor J, Kessler LJ, Brooks DG, Cotsarelis G. Decreased serum ferritin is associated with alopecia in women. J Invest Dermatol. 2003;121:985–8.

    CAS  PubMed  CrossRef  Google Scholar 

  147. Chamberlain AJ, Dawber RP. Significance of iron status in hair loss in women. Br J Dermatol. 2003;149:428.

    CAS  PubMed  CrossRef  Google Scholar 

  148. Rushton DH. Decreased serum ferritin and alopecia in women. J Invest Dermatol. 2003;121:xvii–xviii.

    CAS  PubMed  CrossRef  Google Scholar 

  149. Trost LB, Bergfeld WF, Calogeras E. The diagnosis and treatment of iron deficiency and its potential relationship to hair loss. J Am Acad Dermatol. 2006;54:824–44.

    PubMed  CrossRef  Google Scholar 

  150. Deloche C, Bastien P, Chadoutaud S, Galan P, Bertrais S, Hercberg S, de Lacharrière O. Low iron stores: a risk factor for excessive hair loss in non-menopausal women. Eur J Dermatol. 2007;17:507–12.

    CAS  PubMed  Google Scholar 

  151. Moeinvaziri M, Mansoori P, Holakooee K, Safaee Naraghi Z, Abbasi A. Iron status in diffuse telogen hair loss among women. Acta Dermatovenerol Croat. 2009;17:279–84.

    PubMed  Google Scholar 

  152. Olsen EA, Reed KB, Cacchio PB, Caudill L. Iron deficiency in female pattern hair loss, chronic telogen effluvium, and control groups. J Am Acad Dermatol. 2010;63:991–9.

    CAS  PubMed  CrossRef  Google Scholar 

  153. St Pierre SA, Vercellotti GM, Donovan JC, Hordinsky MK. Iron deficiency and diffuse nonscarring scalp alopecia in women: more pieces to the puzzle. J Am Acad Dermatol. 2010;63:1070–6.

    CAS  PubMed  CrossRef  Google Scholar 

  154. Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800:760–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  155. Firkin F, Rush B. Interpretation of biochemical tests for iron deficiency: diagnostic difficulties related to limitations of individual tests. Aust Prescr. 1997;20:74–6.

    CrossRef  Google Scholar 

  156. Waalen J, Felitti V, Beutler E. Haemoglobin and ferritin concentrations in men and women: cross sectional study. BMJ. 2002;325:137.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  157. Schrier SL. Causes and diagnosis of anaemia due to iron deficiency. www.UpToDate.com, last updated 6 Nov 2003.

  158. Centers for Disease Control (CDC). Recommendations to prevent and control iron deficiency in the Unites States. Morb Mortal Wkly Rep. 1998;47:1–36.

    Google Scholar 

  159. Bregy A, Trüeb RM. No association between serum ferritin levels >10 microg/l and hair loss activity in women. Dermatology. 2008;217:1–6.

    PubMed  CrossRef  Google Scholar 

  160. Groopman J. How doctors think. Boston, NY: Houghton Mifflin Company; 2007.

    Google Scholar 

  161. DeLoughery TG. Safety of oral and intravenous iron. Acta Haematol. 2019;142:8–12.

    CAS  PubMed  CrossRef  Google Scholar 

  162. Rampton D, Folkersen J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, Patni S, Szebeni J, Weiss G. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014;99:1671–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  163. Wong M, Bryson M. Extensive skin hyperpigmentation following intravenous iron infusion. Br J Haematol. 2019;184:709.

    PubMed  CrossRef  Google Scholar 

  164. Moltz L. Hormonal diagnosis in so-called androgenetic alopecia in the female [Article in German]. Geburtshilfe Frauenheilkd. 1988;48:203–14.

    CAS  PubMed  CrossRef  Google Scholar 

  165. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3–18.

    CAS  PubMed  CrossRef  Google Scholar 

  166. Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012;26:66–9.

    CAS  PubMed  CrossRef  Google Scholar 

  167. Solomons NW. Dietary sources of zinc and factors affecting its bioavailability. Food Nutr Bull. 2001;22:138–54.

    CrossRef  Google Scholar 

  168. Prasad AS, Miale A, Farid Z, Sandstead HH, Schulert AR. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med. 1963;61:537–49.

    CAS  PubMed  Google Scholar 

  169. American Dietetic Association. Position of the American Dietetic Association and Dietitians of Canada: vegetarian diets. J Am Diet Assoc. 2003;103:748–65.

    CrossRef  Google Scholar 

  170. Freeland-Graves JH, Bodzy PW, Epright MA. Zinc status of vegetarians. J Am Diet Assoc. 1980;77:655–61.

    CAS  PubMed  Google Scholar 

  171. Smit AJ, Hoorntje SJ, Donker AJ. Zinc deficiency during captopril treatment. Nephron. 1983;34:196–7.

    CAS  PubMed  CrossRef  Google Scholar 

  172. Ikeda M, Ikui A, Komiyama A, Kobayashi D, Tanaka M. Causative factors of taste disorders in the elderly, and therapeutic effects of zinc. J Laryngol Otol. 2008;122:155–60.

    CAS  PubMed  CrossRef  Google Scholar 

  173. Stewart-Knox BJ, Simpson EE, Parr H, Rae G, Polito A, Intorre F, Andriollo Sanchez M, Meunier N, O’Connor JM, Maiani G, Coudray C, Strain JJ. Taste acuity in response to zinc supplementation in older Europeans. Br J Nutr. 2008;99:129–36.

    CAS  PubMed  CrossRef  Google Scholar 

  174. Suzuki H, Asakawa A, Li JB, Tsai M, Amitani H, Ohinata K, Komai M, Inui A. Zinc as an appetite stimulator - the possible role of zinc in the progression of diseases such as cachexia and sarcopenia. Recent Pat Food Nutr Agric. 2011;3:226–31.

    CAS  PubMed  CrossRef  Google Scholar 

  175. Bakan R. The role of zinc in anorexia nervosa: etiology and treatment. Med Hypotheses. 1979;5:731–6.

    CAS  PubMed  CrossRef  Google Scholar 

  176. Birmingham CL, Goldner EM, Bakan R. Controlled trial of zinc supplementation in anorexia nervosa. Int J Eat Disord. 1994;15:251–5.

    CAS  PubMed  Google Scholar 

  177. Alhaj E, Alhaj N, Alhaj NE. Diffuse alopecia in a child due to dietary zinc deficiency. Skinmed. 2007;6:199–200.

    PubMed  CrossRef  Google Scholar 

  178. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176–90.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  179. Hess SY, Peerson JM, King JC, Brown KH. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull. 2007;28(3 Suppl):S403–29.

    PubMed  CrossRef  Google Scholar 

  180. Arnaud J, Beani JC, Favier AE, Amblard P. Zinc status in patients with telogen defluvium. Acta Derm Venereol. 1995;75:248–9.

    CAS  PubMed  Google Scholar 

  181. Karashima T, Tsuruta D, Hamada T, Ono F, Ishii N, Abe T, Ohyama B, Nakama T, Dainichi T, Hashimoto T. Oral zinc therapy for zinc deficiency-related telogen effluvium. Dermatol Ther. 2012;25:210–3.

    PubMed  CrossRef  Google Scholar 

  182. Weismann K, Hagdrup HK. Hair changes due to zinc deficiency in a case of sucrose malabsorption. Acta Derm Venereol. 1981;61:444–7.

    CAS  PubMed  Google Scholar 

  183. Dupré A, Bonafé JL, Carriere JP. The hair in acrodermatitis enteropathica—a disease indicator? Acta Derm Venereol. 1979;59:177–8.

    PubMed  Google Scholar 

  184. Traupe H, Happle R, Gröbe H, Bertram HP. Polarization microscopy of hair in acrodermatitis enteropathica. Pediatr Dermatol. 1986;3:300–3.

    CAS  PubMed  CrossRef  Google Scholar 

  185. Slonim AE, Sadick N, Pugliese M, Meyers-Seifer CH. Clinical response of alopecia, trichorrhexis nodosa, and dry, scaly skin to zinc supplementation. J Pediatr. 1992;121:890–5.

    CAS  PubMed  CrossRef  Google Scholar 

  186. Wolowa F, Jablonska S. Zinc in the treatment of alopecia areata. In: Kobori T, Montagna W, Toda K, editors. Biology and disease of the hair. 2nd ed. Tokyo: University of Tokyo Press; 1976. p. 305–8.

    Google Scholar 

  187. Camacho FM, Garcia-Hernandez MJ. Zinc aspartate, biotin, and clobetasol propionate in the treatment of alopecia areata in childhood. Pediatr Dermatol. 1999;16:336–8.

    CAS  PubMed  CrossRef  Google Scholar 

  188. Ead RD. Oral zinc sulphate in alopecia areata-a double blind trial. Br J Dermatol. 1981;104:483–4.

    CAS  PubMed  CrossRef  Google Scholar 

  189. Lee SY, Nam KS, Seo YW, Lee JS, Chung H. Analysis of serum zinc and copper levels in alopecia areata. Ann Dermatol. 1997;9:239–41.

    CrossRef  Google Scholar 

  190. Malanin K, Telegdy E, Qazaq H. Hair loss and serum zinc values among Arab females in Al Ain region, United Arab Emirates. Eur J Dermatol. 2007;17:446–7.

    PubMed  Google Scholar 

  191. Mussalo-Rauhamaa H, Lakomaa EL, Kianto U, Lehto J. Element concentrations in serum, erythrocytes, hair and urine of alopecia patients. Acta Derm Venereol. 1986;66:103–9.

    CAS  PubMed  Google Scholar 

  192. Park H, Kim CW, Kim SS, Park CW. The therapeutic effect and the changed serum zinc level after zinc supplementation in alopecia areata patients who had a low serum zinc level. Ann Dermatol. 2009;21:142–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  193. Baltaci AK, Mogulkoc R, Baltaci SB. Review: the role of zinc in the endocrine system. Pak J Pharm Sci. 2019;32:231–9.

    CAS  PubMed  Google Scholar 

  194. Jaiser SR, Winston GP. Copper deficiency myelopathy. [Review]. J Neurol. 2010;257:869–81.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  195. Handeland K, Bernhoft A, Aartun MS. A copper deficiency and effects of copper supplementation in a herd of Red Deer (Cervus Elaphus). Acta Vet Scand. 2008;50:8.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  196. Jaiser SR, Winston GP. Copper deficiency myelopathy [Review]. J Neurol. 2010;257:869–81.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  197. Kumar N. Copper deficiency myelopathy (human swayback). Mayo Clin Proc. 2006;81:1371–84.

    CAS  PubMed  CrossRef  Google Scholar 

  198. Hedera P, Peltier A, Fink JK, Wilcock S, London Z, Brewer GJ. Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc. Neurotoxicology (Amsterdam). 2009;30:996–9.

    CAS  CrossRef  Google Scholar 

  199. Schleper B, Stuerenburg HJ. Copper deficiency-associated myelopathy in a 46-year-old woman. J Neurol. 2001;248:705–6.

    CAS  PubMed  CrossRef  Google Scholar 

  200. Goodman JC. Neurological complications of bariatric surgery. Curr Neurol Neurosci Rep. 2015;15:79.

    PubMed  CrossRef  CAS  Google Scholar 

  201. Maksimović J, Djujić I, Jović V, Rsumović M. A selenium deficiency in Yugoslavia. Biol Trace Elem Res. 1992;33:187–96.

    PubMed  CrossRef  Google Scholar 

  202. Ngigi PB, Du Laing G, Masinde PW, Lachat C. Selenium deficiency risk in central Kenya highlands: an assessment from the soil to the body. Environ Geochem Health. 2019; https://doi.org/10.1007/s10653-019-00494-1. Online ahead of print.

  203. Var P, Alfihan G, Ekholm P, Aro A, Koivistoinen P. Selenium intake and serum selenium in Finland: effects of soil fertilization with selenium. Am J Clin Nutr. 1988;48:324–9.

    CrossRef  Google Scholar 

  204. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133:1463S–7S.

    CAS  PubMed  CrossRef  Google Scholar 

  205. Moreno-Reyes R, Carl S, Mathieu F, Begaux F, Zhu D, Rivera MT, Boelaer M, Nève J, et al. Kashin–Beck osteoarthropathy in rural tibet in relation to selenium and iodine status. N Engl J Med. 1998;339:1112–20.

    CAS  PubMed  CrossRef  Google Scholar 

  206. Yao PF, Kang P. Selenium, iodine, and the relation with Kashin–Beck disease. Nutrition. 2011;27:1095–100.

    CAS  PubMed  CrossRef  Google Scholar 

  207. Ravaglia G, Forti P, Maioli F, Bastagli L, Facchini A, Mariani E, Savarino L, Sassi S, et al. Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged ≥90 y. Am J Clin Nutr. 2000;71:590–8.

    CAS  PubMed  CrossRef  Google Scholar 

  208. Kanekura T, Yotsumoto S, Maeno N, Kamenosono A, Saruwatari H, Uchino Y, Mera Y, Kanzaki T. Selenium deficiency: report of a case. Clin Exp Dermatol. 2005;30:346–8.

    CAS  PubMed  CrossRef  Google Scholar 

  209. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, Lichtenstein AH, Lau J, Balk EM. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  210. Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, Lichtenstein A, Patel K, Raman G, Tatsioni A, Terasawa T, Trikalinos TA. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess. 2009;183:1–420.

    Google Scholar 

  211. Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Wetterslev J, Simonetti RG, Bjelakovic M, Gluud C. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014;1:CD007470.

    Google Scholar 

  212. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabet& Endocrinol. 2014;2:307–20.

    CAS  CrossRef  Google Scholar 

  213. Tamura M, Ishizawa M, Isojima T, Özen S, Oka A, Makishima M, Kitanaka S. Functional analyses of a novel missense and other mutations of the vitamin D receptor in association with alopecia. Sci Rep. 2017;7:5102.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  214. Xie Z, Komuves L, Yu Q-C, Elalieh H, Ng DC, Leary C, et al. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth. J Invest Dermatol. 2002;118:11–6.

    CAS  PubMed  CrossRef  Google Scholar 

  215. Amor KT, Rashid RM, Mirmirani P. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling. Dermatol Online J. 2010;16:3.

    PubMed  Google Scholar 

  216. Fawzi MM, Mahmoud SB, Ahmed SF, Shaker OG. Assessment of vitamin D receptors in alopecia areata and androgenetic alopecia. J Cosmet Dermatol. 2016;15:318–23.

    PubMed  CrossRef  Google Scholar 

  217. Yilmaz N, Serarslan G, Gokce C. Vitamin D concentration are decreased in patients with alopecia areata. Vitam Trace Elem. 2019;1:105–9.

    Google Scholar 

  218. d’Ovidio R, Vessio M, d’Ovidio FD. Reduced level of 25-hydroxyvitamin D in chronic/relapsing alopecia areata. Dermatoendocrinol. 2013;5:271–3.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  219. Aksu Cerman A, Sarikaya Solak S, Kivanc Altunay I. Vitamin D deficiency in alopecia areata. Br J Dermatol. 2014;170:1299–304.

    CAS  PubMed  CrossRef  Google Scholar 

  220. Mahamid M, Abu-Elhija O, Samamra M, Mahamid A, Nseir W. Association between vitamin D levels and alopecia areata. Isr Med Assoc J. 2014;16:367–70.

    PubMed  Google Scholar 

  221. Bakry OA, El Farargy SM, El Shafiee MK, Soliman A. Serum Vitamin D in patients with alopecia areata. Indian Dermatol Online J. 2016;7:371–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  222. Ghafoor R, Anwar MI. Vitamin D deficiency in alopecia areata. J Coll Physicians Surg Pak. 2017;27:200–2.

    PubMed  Google Scholar 

  223. Erpolat S, Sarifakioglu E, Ayyildiz A. 25-Hydroxyvitamin D status in patients with alopecia areata. Postepy Dermatol Alergol. 2017;34:248–52.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  224. Unal M, Gonulalan G. Serum vitamin D level is related to disease severity in pediatric alopecia areata. J Cosmet Dermatol. 2018;17:101–4.

    PubMed  CrossRef  Google Scholar 

  225. Thompson JM, Li T, Park MK, Qureshi AA, Cho E. Estimated serum vitamin D status, vitamin D intake, and risk of incident alopecia areata among US women. Arch Dermatol Res. 2016;308:671–6.

    CAS  PubMed  CrossRef  Google Scholar 

  226. Rasheed H, Mahgoub D, Hegazy R, El-Komy M, Abdel Hay R, Hamid MA, et al. Serum ferritin and vitamin D in female hair loss: do they play a role? Skin Pharmacol Physiol. 2013;26:101–7.

    CAS  PubMed  CrossRef  Google Scholar 

  227. Banihashemi M, Nahidi Y, Meibodi NT, Jarahi L, Dolatkhah M. Serum vitamin D3 level in patients with female pattern hair loss. Int J Trichology. 2016;8:116–20.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  228. Cheung E, Sink J, English Lii J. Vitamin and mineral deficiencies in patients with telogen effluvium: a retrospective cross-sectional study. J Drugs Dermatol. 2016;15(10):1235–7.

    CAS  PubMed  Google Scholar 

  229. Nayak K, Garg A, Mithra P, Manjrekar P. Serum vitamin D3 levels and diffuse hair fall among the student population in south India: a case-control study. Int J Trichology. 2016;8:160–4.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  230. Speicher P. Serum vitamin D levels in women with hair loss. Inaugural Dissertation, University of Zurich, in preparation.

    Google Scholar 

  231. O’Brien KF, Maiman RE, DeWitt CA. Multiple nutritional deficiencies in a morbidly obese patient. Am J Gastroenterol. 2019;114:11.

    PubMed  CrossRef  Google Scholar 

  232. Argilés JM. Cancer-associated malnutrition. Eur J Oncol Nurs. 2005;9(Suppl 2):S39–50.

    PubMed  CrossRef  Google Scholar 

  233. Leandro-Merhi VA, Costa CL, Saragiotto L, Aquino JLB. Nutritional indicators of malnutrition in hospitalized patients. Arq Gastroenterol. 2019;56:447–50.

    PubMed  CrossRef  Google Scholar 

  234. Khor GL. Update on the prevalence of malnutrition among children in Asia. Nepal Med Coll J. 2003;5:113–22.

    PubMed  Google Scholar 

  235. Aparicio E, Canals J, Pérez S, Arija V. Dietary intake and nutritional risk in Mediterranean adolescents in relation to the severity of the eating disorder. Public Health Nutr. 2015;18:1461–73.

    PubMed  CrossRef  Google Scholar 

  236. Li S, Ney M, Eslamparast T, Vandermeer B, Ismond KP, Kroeker K, Halloran B, Raman M, Tandon P. Systematic review of nutrition screening and assessment in inflammatory bowel disease. World J Gastroenterol. 2019;25:3823–37.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  237. Mziray-Andrew CH, Sentongo TA. Nutritional deficiencies in intestinal failure. Pediatr Clin North Am. 2009;56:1185–200.

    PubMed  CrossRef  Google Scholar 

  238. Cano NJ, Heng AE, Pison C. Multimodal approach to malnutrition in malnourished maintenance hemodialysis patients. J Ren Nutr. 2011;21:23–6.

    PubMed  CrossRef  Google Scholar 

  239. Shaker M, Venter C. The ins and outs of managing avoidance diets for food allergies. Curr Opin Pediatr. 2016;28:567–72.

    CAS  PubMed  CrossRef  Google Scholar 

  240. Redondo Robles L, Pintor de la Maza B, Tejada García J, García Vieitez JJ, Fernández Gómez MJ, Barrera Mellado I, Ballesteros Pomar MD. Nutritional profile of multiple sclerosis. Nutr Hosp. 2019;36:340–9.

    PubMed  Google Scholar 

  241. Imdad A, Bhutta ZA. Intervention strategies to address multiple micronutrient deficiencies in pregnancy and early childhood. Nestle Nutr Inst Workshop Ser. 2012;70:61–73.

    CAS  PubMed  CrossRef  Google Scholar 

  242. Beck AM. Nutritional interventions among old people receiving support at home. Proc Nutr Soc. 2018;77:265–9.

    PubMed  CrossRef  Google Scholar 

  243. Park M, Song JA, Lee M, Jeong H, Lim S, Lee H, Kim CG, Kim JS, Kim KS, Lee YW, Lim YM, Park YS, Yoon JC, Kim KW, Hong GS. National study of the nutritional status of Korean older adults with dementia who are living in long-term care settings. Jpn J Nurs Sci. 2018;15:318–29.

    PubMed  CrossRef  Google Scholar 

  244. Pingleton SK. Nutrition in chronic critical illness. Clin Chest Med. 2001;22:149–63.

    CAS  PubMed  CrossRef  Google Scholar 

  245. Darmon N. A fortified street food to prevent nutritional deficiencies in homeless men in France. J Am Coll Nutr. 2009;28:196–202.

    CAS  PubMed  CrossRef  Google Scholar 

  246. Dickson JM, Naylor G, Colver G, Powers HJ, Masters P. Multiple vitamin deficiencies in a patient with a history of chronic alcohol excess and self-neglect in the UK. BMJ Case Rep. 2014;2014:bcr2014204523.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  247. Kuroda T, Uenishi K, Ohta H, Shiraki M. Multiple vitamin deficiencies additively increase the risk of incident fractures in Japanese postmenopausal women. Osteoporos Int. 2019;30:593–9.

    CAS  PubMed  CrossRef  Google Scholar 

  248. Söderström L, Rosenblad A, Thors Adolfsson E, Bergkvist L. Malnutrition is associated with increased mortality in older adults regardless of the cause of death. Br J Nutr. 2017;117:532–40.

    PubMed  CrossRef  CAS  Google Scholar 

  249. Heath ML, Sidbury R. Cutaneous manifestations of nutritional deficiency. Curr Opin Pediatr. 2006;18:417–22.

    PubMed  CrossRef  Google Scholar 

  250. Goskowicz M, Eichenfield LF. Cutaneous findings of nutritional deficiencies in children. Curr Opin Pediatr. 1993;5:441–5.

    CAS  PubMed  Google Scholar 

  251. Huber MA, Hall EH. Glossodynia in patients with nutritional deficiencies. Ear Nose Throat J. 1989;68:771–5.

    CAS  PubMed  Google Scholar 

  252. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 2012;10:13.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  253. Lebwohl B, Ludvigsson JF, Green PH. Celiac disease and non-celiac gluten sensitivity. BMJ. 2015;351:h4347.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  254. Fasano A. Clinical presentation of celiac disease in the pediatric population. Gastroenterology. 2005;128(4 Suppl 1):S68–73.

    PubMed  CrossRef  Google Scholar 

  255. Lionetti E, Gatti S, Pulvirenti A, Catassi C. Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol. 2015;29:365–79.

    PubMed  CrossRef  Google Scholar 

  256. Ludvigsson JF, Card T, Ciclitira PJ, Swift GL, Nasr I, Sanders DS, Ciacci C. Support for patients with celiac disease: a literature review. United Eur Gastroenterol J. 2015;3:146–59.

    CrossRef  Google Scholar 

  257. Lundin KE, Wijmenga C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat Rev Gastroenterol Hepatol. 2015;12:507–15.

    CAS  PubMed  CrossRef  Google Scholar 

  258. Corazza GR, Andreani ML, Venturo N, et al. Celiac disease and alopecia areata: report of a new association. Gastroenterology. 1995;109(4):1333–7.

    CAS  PubMed  CrossRef  Google Scholar 

  259. Naveh Y, Rosenthal E, Ben-Arieh Y, Etzioni A. Celiac disease-associated alopecia in childhood. J Pediatr. 1999;134:362–4.

    CAS  PubMed  CrossRef  Google Scholar 

  260. Ertekin V, Tosun MS, Erdem T. Screening of celiac disease in children with alopecia areata. Indian J Dermatol. 2014;59(3):317.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  261. Catassi C, Bai JC, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J, Francavilla R, Elli L, Green P, Holtmeier W, Koehler P, Koletzko S, Meinhold C, Sanders D, Schumann M, Schuppan D, Ullrich R, Vécsei A, Volta U, Zevallos V, Sapone A, Fasano A. Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrients. 2013;5:3839–53.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  262. Mansueto P, Seidita A, D’Alcamo A, Carroccio A. Non-celiac gluten sensitivity: literature review. J Am Coll Nutr. 2014;33:39–54.

    PubMed  CrossRef  Google Scholar 

  263. Verdu EF, Armstrong D, Murray JA. Between celiac disease and irritable bowel syndrome: the “no man’s land” of gluten sensitivity. Am J Gastroenterol. 2009;104:1587–94.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  264. van der Windt DA, Jellema P, Mulder CJ, Kneepkens CM, van der Horst HE. Diagnostic testing for celiac disease among patients with abdominal symptoms: a systematic review. JAMA. 2010;303:1738–46.

    PubMed  CrossRef  Google Scholar 

  265. Lewis NR, Scott BB. Systematic review: the use of serology to exclude or diagnose coeliac disease (a comparison of the endomysial and tissue transglutaminase antibody tests). Aliment Pharmacol Ther. 2006;24:47–54.

    CAS  PubMed  CrossRef  Google Scholar 

  266. Rostom A, Murray JA, Kagnoff MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology. 2006;131:1981–2002.

    PubMed  CrossRef  Google Scholar 

  267. Hill ID, Dirks MH, Liptak GS, Colletti RB, Fasano A, Guandalini S, Hoffenberg EJ, Horvath K, Murray JA, Pivor M, Seidman EG. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005;40:1–19.

    PubMed  CrossRef  Google Scholar 

  268. Bondavalli P, Quadri G, Parodi A, Rebora A. Failure of gluten-free diet in celiac disease-associated alopecia areata. Acta Derm Venereol. 1998;78:319.

    CAS  PubMed  CrossRef  Google Scholar 

  269. Viola F, Barbato M, Formisano M, et al. Reappearance of alopecia areata in a coeliac patient during an unintentional challenge with gluten. Minerva Gastroenterol Dietol. 1999;45:283–5.

    CAS  PubMed  Google Scholar 

  270. Bardella MT, Marino R, Barbareschi M, et al. Alopecia areata and coeliac disease: no effect of a gluten-free diet on hair growth. Dermatology. 2000;200:108–10.

    CAS  PubMed  CrossRef  Google Scholar 

  271. Zampetti M, Filippetti R. Alopecia areata and celiac disease. G Ital Dermatol Venereol. 2008;143(2):168.

    CAS  PubMed  Google Scholar 

  272. Sun X, Lu L, Yang R, Li Y, Shan L, Wang Y. Increased incidence of thyroid disease in patients with celiac disease: a systematic review and meta-analysis. PLoS One. 2016;11:e0168708.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  273. Kanazawa M, Yoshiike N, Osaka T, Numba Y, Zimmet P, Inoue S. Criteria and classification of obesity in Japan and Asia-Oceania. Nutrition and fitness: obesity, the metabolic syndrome, cardiovascular disease, and cancer. World Rev Nutr Diet. 2005;94:1–12.

    PubMed  Google Scholar 

  274. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83–96.

    PubMed  Google Scholar 

  275. Singh D. Female mate value at a glance: relationship of waist-to-hip ratio to health, fecundity and attractiveness. Neuro Endocrinol Lett. 2002;23(Suppl 4):81–91.

    PubMed  Google Scholar 

  276. Marlowe F, Apicella C, Reed D. Men’s preferences for women’s profile waist-to-hip ratio in two societies. Evol Hum Behav. 2005;26:458–68.

    CrossRef  Google Scholar 

  277. Cagnacci A, Zanin R, Cannoletta M, Generali M, Caretto S, Volpe A. Menopause, estrogens, progestins, or their combination on body weight and anthropometric measure. Fertil Steril. 2007;88:1603–8.

    PubMed  CrossRef  Google Scholar 

  278. Freeman EW, Sammel MD, Lin H, Gracia CR. Obesity and reproductive hormone levels in the transition to menopause. Menopause. 2007;17:718–26.

    Google Scholar 

  279. Cagnacci A, Zanin R, Cannoletta M, Generali M, Caretto S, Volpe A. Menopause, estrogens, progestins, or their combination on body weight and anthropometric measure. Fertil Steril. 2007;88:1603–8.

    PubMed  CrossRef  Google Scholar 

  280. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of childhood and adult obesity in the Unites States, 2011-2012. JAMA. 2014;311:806–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  281. Vogelezang S, Monnereau C, Gaillard R, Renders CM, Hofman A, Jaddoe VW, Felix JF. Adult adiposity susceptibility loci, early growth and general and abdominal fatness in childhood. The Generation R Study. Int J Obes. 2015;39:1001–9.

    CAS  CrossRef  Google Scholar 

  282. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–80.

    CAS  PubMed  CrossRef  Google Scholar 

  283. Dentali F, Squizzato A, Ageno W. The metabolic syndrome as a risk factor for venous and arterial thrombosis. Semin Thromb Hemost. 2009;35:451–7.

    CAS  PubMed  CrossRef  Google Scholar 

  284. Pallardo LF, Molina RC. Case of alopecia, in prepuberal obesity syndrome, treated with ACTH. Medicamenta (Madr). 1954;2:121–6.

    CAS  Google Scholar 

  285. Malaisse W, Lauvaux JP, Franckson JR, Bastenie PA. Diabetes in bearded women (Achard-Thiers-Syndrome): a clinical and metabolic study of 20 cases. Diabetologia. 1966;1:155–61.

    CAS  PubMed  CrossRef  Google Scholar 

  286. Lubowe I. Achard-Thiers syndrome. Arch Dermatol. 1971;103:544–5.

    CAS  PubMed  CrossRef  Google Scholar 

  287. Gracia-Ramos AE. Morgagni-Stewart-Morel syndrome. Case report and review of the literature. Rev Med Inst Mex Seguro Soc. 2016;54:664–9.

    PubMed  Google Scholar 

  288. Azziz R, Adashi EY. Stein and Leventhal: 80 years on. Am J Obstet Gynecol. 2016;214:247.e1–247.e11.

    CrossRef  Google Scholar 

  289. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.

    CrossRef  Google Scholar 

  290. Ding T, Hardiman PJ, Petersen I, Wang FF, Qu F, Baio G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: a systematic review and meta-analysis. Oncotarget. 2017;8:96,351–8.

    CrossRef  Google Scholar 

  291. Spritzer PM, Barone CR, Oliveira FB. Hirsutism in polycystic ovary syndrome: pathophysiology and management. Curr Pharm Des. 2016;22:5603–13.

    CAS  PubMed  CrossRef  Google Scholar 

  292. Wong M, Zhao X, Hong Y, Yang D. Semiquantitative assessment of hirsutism in 850 PCOS patients and 2,988 controls in China. Endokrynol Pol. 2014;65(5):365–70.

    PubMed  CrossRef  CAS  Google Scholar 

  293. Franik G, Bizoń A, Włoch S, Kowalczyk K, Biernacka-Bartnik A, Madej P. Hormonal and metabolic aspects of acne vulgaris in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2018;22:4411–8.

    CAS  PubMed  Google Scholar 

  294. Vexiau P, Chaspoux C, Boudou P, et al. Effects of minoxidil 2% vs. cyproterone acetate treatment on female androgenetic alopecia: a controlled, 12-month randomized trial. Br J Dermatol. 2002;146:992–9.

    CAS  PubMed  CrossRef  Google Scholar 

  295. Gilbert EW, Tay CT, Hiam DS, Teede HJ, Moran LJ. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews. Clin Endocrinol (Oxf). 2018;89:683–99.

    CrossRef  Google Scholar 

  296. O’Brien B, Dahiya R, Kimble R. Hyperandrogenism, insulin resistance and acanthosis nigricans (HAIR-AN syndrome): an extreme subphenotype of polycystic ovary syndrome. BMJ Case Rep. 2020;1:pii e231749.

    CrossRef  Google Scholar 

  297. Piacquadio DJ, Rad FS, Spellman MC, Hollenbach KA. Obesity and female androgenic alopecia: a cause and an effect? J Am Acad Dermatol. 1994;30:1028–30.

    CAS  PubMed  CrossRef  Google Scholar 

  298. Mirmirani P, Carpenter DM. The impact of obesity on the folliculosebaceous unit. J Am Acad Dermatol. 2014;71:584–5.

    PubMed  CrossRef  Google Scholar 

  299. Yang CC, Hsieh FN, Lin LY, Hsu CK, Sheu HM, Chen W. Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study. J Am Acad Dermatol. 2014;70:297–302.

    PubMed  CrossRef  Google Scholar 

  300. Hirsso P, Rajala U, Hiltunen L, Jokelainen J, Keinänen-Kiukaanniemi S, Näyhä S. Obesity and low-grade inflammation among young Finnish men with early-onset alopecia. Dermatology. 2007;214:125–9.

    PubMed  CrossRef  Google Scholar 

  301. Arias-Santiago S, Gutiérrez-Salmerón MT, Castellote-Caballero L, Buendía-Eisman A, Naranjo-Sintes. Androgenetic alopecia and cardiovascular risk factors in men and women: a comparative study. J Am Acad Dermatol. 2010;63:420–9.

    PubMed  CrossRef  Google Scholar 

  302. Starka L, Duskova M, Cermakova I, et al. Premature androgenic alopecia and insulin resistance. Male equivalent of polycystic ovary syndrome? Endocr Regul. 2010;39:127–31.

    Google Scholar 

  303. Lee CN, Chen W, Hsu CK, Weng TT, Lee JY, Yang CC. Dissecting folliculitis (dissecting cellulitis) of the scalp: a 66-patient case series and proposal of classification. J Dtsch Dermatol Ges. 2018;16:1219–26.

    PubMed  Google Scholar 

  304. Lijesen GK, Theeuwen I, Assendelft WJ, Van Der Wal G. The effect of human chorionic gonadotropin (HCG) in the treatment of obesity by means of the Simeons therapy: a criteria-based meta-analysis. Br J Clin Pharmacol. 1995;40:237–43.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  305. Goette DK, Odum RB. Letter: profuse hair loss. Arch Dermatol. 1975;111:930.

    CAS  PubMed  CrossRef  Google Scholar 

  306. Griggs J, Almohanna H, Ahmed A, Tosti A. New-onset androgenic alopecia following human chorionic gonadotropic diet and testosterone pellet implantation. Int J Trichology. 2018;10:284–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  307. Colquitt JL, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8:CD003641.

    Google Scholar 

  308. Stein J, Stier C, Raab H, Weinger R. Review article: the nutritional and pharmacological consequence of obesity surgery. Aliment Pharmacol Ther. 2014;40:582–609.

    CAS  PubMed  CrossRef  Google Scholar 

  309. Faintuch J, Matsuda M, Cruz ME, et al. Severe protein-calorie malnutrition after bariatric procedures. Obes Surg. 2004;14:175–81.

    PubMed  CrossRef  Google Scholar 

  310. Heber D, Greenway FL, Kaplan LM, Livingston E, .Salvador J, Still C. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 95:4823-4843 (2010)

    CAS  PubMed  CrossRef  Google Scholar 

  311. Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P. Branched amino acids as fuels and ababolic sgnals in human muscle. J Nutr. 2006;136:264S–8S.

    CAS  PubMed  CrossRef  Google Scholar 

  312. Janssen I, Fortier A, Hudson R, Ross R. Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care. 2002;25:431–8.

    PubMed  CrossRef  Google Scholar 

  313. Carrodeguas L, Kaidar-Person O, Szomstein S, Antozzi P, Rosenthal R. Preoperative thiamine deficiency in obese population undergoing laparoscopic bariatric surgery. Surg Obes Relat Dis. 2005;1:517–22.

    PubMed  CrossRef  Google Scholar 

  314. Aasheim ET. Wernicke encephalopathy after bariatric surgery: a systematic review. Ann Surg. 2008;248:714–20.

    PubMed  Google Scholar 

  315. WHO. Thiamine deficiency and its prevention and control in major emergencies [online]; 1999. http://whqlibdoc.who.int/hq/1999/WHO_NHD_99.13.pdf

  316. Sriram K, Manzanares W, Joseph K. Thiamine in nutrition therapy. Nutr Clin Pract. 2012;27:41–50.

    PubMed  CrossRef  Google Scholar 

  317. Kopelman MD, Thomson AD, Guerrini I, Marshal EJ. The Korsakoff syndrome: clinical aspects, psychology and treatment. Alcohol Alcohol. 2009;44:148–54.

    PubMed  CrossRef  Google Scholar 

  318. Blume CA, Boni CC, Casagrande DS, Rizzolli J, Padoin AV, Mottin CC. Nutritional profile of patients before and after Roux-en-Y gastric bypass: 3-year follow-up. Obes Surg. 2012;22:1676–85.

    PubMed  CrossRef  Google Scholar 

  319. Long AN, Atwell CL, Yoo W, Solomon SS. Vitamin B(12) deficiency associated with concomitant metformin and proton pump inhibitor use. Diabetes Care. 2012;35:e84.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  320. Dalcanale L, Oliveira CP, Fainthuch J, et al. Long-term nutritional outcome after gastric bypass. Obes Surg. 2010;20:181–7.

    PubMed  CrossRef  Google Scholar 

  321. Lachner C, Steinle NI, Regenild WT. The neuropsychiatry of vitamin B12 deficiency in elderly patients. J Neuropsychiatry Clin Neurosci. 2012;24:5–115.

    PubMed  CrossRef  Google Scholar 

  322. Daulatabad D, Singal A, Grover C, Chhillar N. Prospective analytical controlled study evaluating serum biotin, vitamin B12, and folic acid in patients with premature canities. Int J Trichology. 2017;9:19–24.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  323. Sharma N, Dogra D. Association of epidemiological and biochemical factors with premature graying of hair: a case-control study. Int J Trichology. 2018;10:211–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  324. Said HM. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J. 2011;437:357–72.

    CAS  PubMed  CrossRef  Google Scholar 

  325. Mallory GN, Macgregor AM. Folate status following gastric bypass surgery (the great folate mystery). Obes Surg. 1991;1:69–72.

    CAS  PubMed  CrossRef  Google Scholar 

  326. Shane B, Stokstad EL. Vitamin B12-folate interrelationships. Annu Rev Nutr. 1985;5:115–41.

    CAS  PubMed  CrossRef  Google Scholar 

  327. von Drygalski A, Andris DA. Anemia after surgery: more than just iron deficiency. Nutr Clin Pract. 2009;234:217–26.

    CrossRef  Google Scholar 

  328. Hansen EP, Metzsche C, Henningsen E, Toft P. Severe scurvy after gastric bypass surgery and a poor postoperative diet. J Clin Med Res. 2012;4:135–7.

    PubMed  PubMed Central  Google Scholar 

  329. Simmons M. Modern-day scurvy: a case following gastric bypass. Bariatric Nurs Surg Patient Care. 2009;4:139–44.

    CrossRef  Google Scholar 

  330. Grethen E, McClintok R, Gupta CE, et al. Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab. 2011;96:1320–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  331. Youssef Y, Richards WO, Sekhar N, et al. Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc. 2007;21:1393–6.

    CAS  PubMed  CrossRef  Google Scholar 

  332. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endorcinol Metab. 2011;96:53–8.

    CAS  CrossRef  Google Scholar 

  333. Hewitt S, Sovik TT, Aasheim ET, et al. Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg. 2013;23:384–90.

    PubMed  CrossRef  Google Scholar 

  334. Pereira SE, Saboya CJ, Saunders C, Ramalho A. Serum levels and liver store of retinol and their association with night blindness in individuals with class III obesity. Obes Surg. 2012;22:602–8.

    PubMed  CrossRef  Google Scholar 

  335. Aills L, Blankenship J, Buffington C, Furtado M, Prrott J. ASMBS allied health nutritional guidelines for the surgical weight patient. Surg Obes Relat Dis. 2008;4:S73–108.

    PubMed  CrossRef  Google Scholar 

  336. Slater GH, Ren CJ, Siegel N, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.

    PubMed  CrossRef  Google Scholar 

  337. Strople J, Lovell G, Heubi J. Prevalence of subclinical vitamin K deficiency in cholestatic liver disease. J Pediatr Gastroenterol Nutr. 2009;49:78–84.

    CAS  PubMed  CrossRef  Google Scholar 

  338. Ducros V, Pollicand M, Laporte F, Favier A. Quantitative determination of plasma vitamin K1 by high-performance liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Biochem. 2010;401:7–14.

    CAS  PubMed  CrossRef  Google Scholar 

  339. Watras MM, Patel JP, Arya R. Traditional anticoagulants and hair loss: a role for direct oral anticoagulants? A review of the literature. Drugs Real World Outcomes. 2016;3:1–6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  340. Song A, Fernstrom MH. Nutritional and psychological considerations after bariatric surgery. Aesthet Surg J. 2008;28:195–9.

    CAS  PubMed  CrossRef  Google Scholar 

  341. Heber D, Greenway FL, Kaplan LM, Livingston E, Salvador J, Still C. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2010;95:4823–43.

    CAS  PubMed  CrossRef  Google Scholar 

  342. Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013;5:3022–33.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  343. Corica F, Allegra A, Ientile R, Buemi M. Magnesium concentrations in plasma, erythrocytes, and platelets in hypertensive and normotensive obese patients. Am J Hypertens. 1997;10:1311–3.

    CAS  PubMed  CrossRef  Google Scholar 

  344. Luk CP, Parsons R, Lee YP, Hughes JD. Proton pump inhibitor-associated hypomagnesemia: what do FDA data tell us? Ann Pharmacother. 2013;47:773–80.

    PubMed  CrossRef  CAS  Google Scholar 

  345. Walker AF, Marakis G, Christie S, Byng M. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res. 2003;16:183–91.

    CAS  PubMed  Google Scholar 

  346. Ganzoni AM. Intravenous iron-dextran: therapeutic and experimental possibilities. Schweiz Med Wochenschr. 1970;100:301–3.

    CAS  PubMed  Google Scholar 

  347. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society and American Society of Metabolic & Bariatric Surger. Obesity (Silver Spring). 2013;21(Suppl. 1):S1–27.

    CAS  CrossRef  Google Scholar 

  348. Shahidzadeh R, Sridhar S. Profound copper deficiency in a patient with gastric bypass. Am J Gastroenterol. 2008;103:2660–2.

    PubMed  CrossRef  Google Scholar 

  349. Franko DL, et al. A longitudinal investigation of mortality in anorexia nervosa and bulimia nervosa. Am J Psychiatry. 2013;2170:917–25.

    CrossRef  Google Scholar 

  350. Vaughan ED Jr, Sawyers JL, Scott HW Jr. The Rapunzel syndrome. An unusual complication of intestinal bezoar. Surgery. 1968;63:339–43.

    PubMed  Google Scholar 

  351. Hergüner S, Ozyildirim I, Tanidir C. Is Pica an eating disorder or an obsessive-compulsive spectrum disorder? Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:2010–1.

    PubMed  CrossRef  Google Scholar 

  352. Miao D, Young SL, Golden CD. A meta-analysis of pica and micronutrient status. Am J Hum Biol. 2015;27:84–93.

    PubMed  CrossRef  Google Scholar 

  353. McGehee FT Jr, Buchanan GR. Trichophagia and trichobezoar: etiologic role of iron deficiency. J Pediatr. 1980;97:946–8.

    PubMed  CrossRef  Google Scholar 

  354. Cannalire G, Conti L, Celoni M, Grassi C, Cella A, Bensi G, Capelli P, Biasucci G. Rapunzel syndrome: an infrequent cause of severe iron deficiency anemia and abdominal pain presenting to the pediatric emergency department. BMC Pediatr. 2018;18:125.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  355. Hadnagy C, Binder P, Grauzer J, Szöcs K. Trichophagia treated successfully by intravenous iron injections [Article in Hungarian]. Orv Hetil. 1991;132:35–6.

    CAS  PubMed  Google Scholar 

  356. Hadnagy C, Grauzer SJ, Binder P, Szöcs K. Iron therapy in mental aberrations (pica) in childhood [Article in German]. Kinderarztl Prax. 1991;59:126–8.

    CAS  PubMed  Google Scholar 

  357. Grant JE, Odlaug BL, Kim SW. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry. 2009;66:756–63.

    CAS  PubMed  CrossRef  Google Scholar 

  358. Bloch MH, Panza KE, Grant JE, Pittenger C, Leckman JF. N-acetylcysteine in the treatment of pediatric trichotillomania: a randomized, double-blind, placebo-controlled add-on trial. J Am Acad Child Adolesc Psychiatry. 2013;52:231–40.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  359. Grant JE, Odlaug BL, Chamberlain SR, Kim SW. Dronabinol, a cannabinoid agonist, reduces hair pulling in trichotillomania: a pilot study. Psychopharmacology (Berl). 2011;218:493–502.

    CAS  CrossRef  Google Scholar 

  360. Culbert KM, Racine SE, Klump KL. Research review: what have we learned about the causes of eating disorders—a synthesis of sociocultural, psychological and biological research. J Child Psychol Psychiatry. 2015;56:1141–64.

    PubMed  CrossRef  Google Scholar 

  361. Matthews-Ewald MR, Zullig KH, Ward RM. Sexual orientation and disordered eating behaviors among self-identified male and female college students. Eat Behav. 2014;15:441–4.

    PubMed  CrossRef  Google Scholar 

  362. Strumia R. Skin signs in anorexia nervosa. Dermatoendocrinol. 2009;1:268–70.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  363. Hediger C, Rost B, Itin P. Cutaneous manifestations in anorexia nervosa. Schweiz Med Wochenschr. 2000;130:565–75.

    CAS  PubMed  Google Scholar 

  364. Zucker N, Von Holle A, Thornton LM, Strober M, Plotnicov K, Klump KL, Brandt H, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, Keel P, LaVia M, Mitchell JE, Rotondo A, Woodside DB, Berrettini WH, Kaye WH, Bulik CM. The significance of repetitive hair-pulling behaviors in eating disorders. J Clin Psychol. 2011;67:391–403.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  365. Grillo E, Vano-Galvan S, Diaz-Ley B, Jaén P. Patchy hair loss on the pubis—a case study. Aust Fam Physician. 2013;42:487–9.

    PubMed  Google Scholar 

  366. Achamrah N, Coëffier M, Rimbert A, Charles J, Folope V, Petit A, Déchelotte P, Grigioni S. Micronutrient status in 153 patients with anorexia nervosa. Nutrients. 2017;9:225.

    PubMed Central  CrossRef  CAS  Google Scholar 

  367. Shay NF, Mangian HF. Neurobiology of zinc-influenced eating behavior. J Nutr. 2000;130:1493S–9S.

    CAS  PubMed  CrossRef  Google Scholar 

  368. Hambidge KM, Hambidge C, Jacobs M, Baum JD. Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatr Res. 1972;6:868–74.

    CAS  PubMed  CrossRef  Google Scholar 

  369. Lask B, Fosson A, Rolfe U, Thomas S. Zinc deficiency and childhood-onset anorexia nervosa. J Clin Psychiatry. 1993;54:63–6.

    CAS  PubMed  Google Scholar 

  370. Yamaguchi H, Arita Y, Hara Y, Kimura T, Nawata H. Anorexia nervosa responding to zinc supplementation: a case report. Gastroenterol Jpn. 1992;27:554–8.

    CAS  PubMed  CrossRef  Google Scholar 

  371. Birmingham CL, Gritzner S. How does zinc supplementation benefit anorexia nervosa? Eat Weight Disord. 2006;11:e109–11.

    CAS  PubMed  CrossRef  Google Scholar 

  372. Seeger G, Braus DF, Ruf M, Goldberger U, Schmidt MH. Body image distortion reveals amygdala activation in patients with anorexia nervosa—a functional magnetic resonance imaging study. Neurosci Lett. 2002;326:25–8.

    CAS  PubMed  CrossRef  Google Scholar 

  373. Takano A, Shiga T, Kitagawa N, Koyama T, Katoh C, Tsukamoto E, Tamaki N. Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res. 2001;107:45–50.

    CAS  PubMed  CrossRef  Google Scholar 

  374. O’Connor G, Nicholls D. Refeeding hypophosphatemia in adolescents with anorexia nervosa: a systematic review. Nutr Clin Pract. 2013;28:358–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  375. Kaye W. Neurobiology of anorexia and bulimia nervosa. Physiol Behav. 2008;94:121–35.

    CAS  PubMed  CrossRef  Google Scholar 

  376. Dietary Guidelines for Americans 2005. health.gov. 2005. Archived from the original on 1 July 2007. Dietary Guidelines.

  377. Young adult drinking. Alcohol alert (68). April 2006. Archived from the original on 13 February 2013. Accessed 18 February 2013.

    Google Scholar 

  378. Ryle PR, Thomson AD. Nutrition and vitamins in alcoholism. Contemp Issues Clin Biochem. 1984;1:188–224.

    CAS  PubMed  Google Scholar 

  379. Sanvisens A, Zuluaga P, Pineda M, Fuster D, Bolao F, Juncà J, Tor J, Muga R. Folate deficiency in patients seeking treatment of alcohol use disorder. Drug Alcohol Depend. 2017;180:417–22.

    CAS  PubMed  CrossRef  Google Scholar 

  380. Narasimha VL, Ganesh S, Reddy S, Shukla L, Mukherjee D, Kandasamy A, Chand PK, Benegal V, Murthy P. Pellagra and alcohol dependence syndrome: findings from a tertiary care addiction treatment centre in India. Alcohol Alcohol. 2019;54:148–51.

    PubMed  CrossRef  Google Scholar 

  381. Shaikh H, Faisal MS, Mewawalla P. Vitamin C deficiency: rare cause of severe anemia with hemolysis. Int J Hematol. 2019;109:618–62.

    CAS  PubMed  CrossRef  Google Scholar 

  382. Kopecký A, Benda F, Němčanský J. Xerosis in patient with vitamin A deficiency—a case report. Cesk Slov Oftalmol. 2018;73:222–4.

    PubMed  Google Scholar 

  383. Sharain K, May AM, Gersh BJ. Chronic alcoholism and the danger of profound hypomagnesemia. Am J Med. 2015;128:e17–8.

    PubMed  CrossRef  Google Scholar 

  384. Anty R, Canivet CM, Patouraux S, Ferrari-Panaia P, Saint-Paul MC, Huet PM, Lebeaupin C, Iannelli A, Gual P, Tran A. Severe vitamin D deficiency may be an additional cofactor for the occurrence of alcoholic steatohepatitis. Alcohol Clin Exp Res. 2015;39:1027–33.

    CAS  PubMed  CrossRef  Google Scholar 

  385. Shahsavari D, Ahmed Z, Karikkineth A, Williams R, Zigel C. Zinc-deficiency acrodermatitis in a patient with chronic alcoholism and gastric bypass: a case report. J Community Hosp Intern Med Perspect. 2014;31:4.

    Google Scholar 

  386. Tanner AR, Bantock I, Hinks L, Lloyd B, Turner NR, Wright R. Depressed selenium and vitamin E levels in an alcoholic population. Possible relationship to hepatic injury through increased lipid peroxidation. Dig Dis Sci. 1986;31:1307–12.

    CAS  PubMed  CrossRef  Google Scholar 

  387. Iber FL, Shamszad M, Miller PA, Jacob R. Vitamin K deficiency in chronic alcoholic males. Alcohol Clin Exp Res. 1986;10:679–81.

    CAS  PubMed  CrossRef  Google Scholar 

  388. Shibazaki S, Uchiyama S, Tsuda K, Taniuchi N. Copper deficiency caused by excessive alcohol consumption. BMJ Case Rep. 2017;26:pii: bcr-2017-220921.

    CrossRef  Google Scholar 

  389. Bahmer FA, Bader M. Skin changes in chronic alcoholism with special reference to the zinc and biotin content of the serum [Article in German]. Z Hautkr. 1987;62:691–5.

    CAS  PubMed  Google Scholar 

  390. Bader U, Hafner J, Burg G. Erythroderma and alcohol abuse [Article in German]. Schweiz Med Wochenschr. 1999;129:508–13.

    CAS  PubMed  Google Scholar 

  391. Rao GS. Cutaneous changes in chronic alcoholics. Indian J Dermatol Venereol Leprol. 2004;70:79–8.

    CAS  PubMed  Google Scholar 

  392. Kostović K, Lipozencić J. Skin diseases in alcoholics. Acta Dermatovenerol Croat. 2004;12:181–90.

    PubMed  Google Scholar 

  393. Christenson B. Queen of Punt. Clin Infect Dis. 2006;42:1344–5.

    PubMed  CrossRef  Google Scholar 

  394. Biondi A, Freni F, Carelli C, Moretti M, Morini L. Ethyl glucuronide hair testing: a review. Forensic Sci Int. 2019;300:106–19.

    CAS  PubMed  CrossRef  Google Scholar 

  395. Morini L, Sempio C, Moretti M. Ethyl glucuronide in hair (hEtG) after exposure to alcohol-based perfumes. Curr Pharm Biotechnol. 2018;19:175–9.

    CAS  PubMed  CrossRef  Google Scholar 

  396. Luginbühl M, Bekaert B, Suesse S, Weinmann W. Detox shampoos for EtG and FAEE in hair—results from in vitro experiments. Drug Test Anal. 2019;11:870–7.

    PubMed  CrossRef  CAS  Google Scholar 

  397. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    CAS  PubMed  CrossRef  Google Scholar 

  398. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznariç Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–36.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  399. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington DC: National Academics Press; 1998.

    Google Scholar 

  400. Norman AW, Bouillon R. Vitamin D nutritional policy needs a vision for the future. Exp Biol Med (Maywood). 2010;235:1034–45.

    CAS  CrossRef  Google Scholar 

  401. Johnson KA, Bernard MA, Funderberg K. Vitamin nutrition in older adults. Clin Geriatr Med. 2002;18:773–99.

    PubMed  CrossRef  Google Scholar 

  402. Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med. 2002;162:2269–76.

    PubMed  CrossRef  Google Scholar 

  403. Diekmann R, Winning K, Uter W, Kaiser MJ, Sieber CC, Volkert D, Bauer JM. Screening for malnutrition among nursing home residents—a comparative analysis of the mini nutritional assessment, the nutritional risk screen, and the malnutrition universal screening tool. J Nutr Health Aging. 2013;17:326–31.

    CAS  PubMed  CrossRef  Google Scholar 

  404. Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7:357–63.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  405. National Center for Health Statistics. Health, United States, 2014: with special feature of adults aged 55-64. Hyattsville, MD: U.S. Government Printing Office; 2015.

    Google Scholar 

  406. Pinkus H. Alopecia: clinicopathologic correlations. Int J Dermatol. 1980;19:245–53.

    CAS  PubMed  CrossRef  Google Scholar 

  407. Ebling FJ. Age changes in cutaneous appendages. J Appl Cosmetol. 1985;3:243–50.

    Google Scholar 

  408. Kligman AM. The comparative histopathology of male-pattern baldness and senescent baldness. Clin Dermatol. 1988;6:108–18.

    CAS  PubMed  CrossRef  Google Scholar 

  409. Trüeb RM, Tobin DH, editors. Aging hair. Berlin Heidelberg: Springer; 2010.

    Google Scholar 

  410. Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36:29–54.

    CAS  PubMed  CrossRef  Google Scholar 

  411. Pandhi D, Khanna D. Premature graying of hair. Indian J Dermatol Venereol Leprol. 2013;79:641–53.

    PubMed  CrossRef  Google Scholar 

  412. Mosley JG, Gibbs CC. Premature grey hair and hair loss among smokers: a new opportunity for health education? BMJ. 1996;313:1616.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  413. Commo S, Gaillard O, Bernard BA. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br J Dermatol. 2004;150:435–43.

    CAS  PubMed  CrossRef  Google Scholar 

  414. Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36:29–54.

    CAS  PubMed  CrossRef  Google Scholar 

  415. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    CAS  PubMed  CrossRef  Google Scholar 

  416. Arck PC, Overall R, Spatz K, et al. Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 2006;20:1567–9.

    CAS  PubMed  CrossRef  Google Scholar 

  417. Wood JM, Decker H, Hartmann H, et al. Senile hair greying: H2O2-mediated oxidative stress affects human hair colour by blunting methionine sulfoxide repair. FASEB J. 2009;23:2065–75.

    CAS  PubMed  CrossRef  Google Scholar 

  418. Nishimura EK, Jordan SA, Oshima H, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854–60.

    CAS  PubMed  CrossRef  Google Scholar 

  419. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.

    CAS  PubMed  CrossRef  Google Scholar 

  420. Hollfelder B, Blankenburg G, Wolfram LJ, Höcker H. Chemical and physical properties of pigmented and non-pigmented hair (‘grey hair’). Int J Cosmet Sci. 1995;17:87–9.

    CAS  PubMed  CrossRef  Google Scholar 

  421. Jeon SY, Pi LQ, Lee WS. Comparison of hair shaft damage after UVA and UVB irradiation. J Cosmet Sci. 2008;59:151–6.

    CAS  PubMed  Google Scholar 

  422. Otsuka H, Nemoto T. Study on Japanese hair. Koshkaischi. 1988;12:192–7.

    Google Scholar 

  423. Robbins C, Mirmirani P, Messenger AG, Birch MP, Youngquist RS, Tamura M, Filloon T, Luo F, Dawson TLJ. What women want—quantifying the perception of hair amount: an analysis of hair diameter and density changes with age in Caucasian women. Br J Dermatol. 2012;167:324–32.

    CAS  PubMed  CrossRef  Google Scholar 

  424. Birch MP, Messenger JF, Messenger AG. Hair density, hair diameter and the prevalence of female pattern hair loss. Br J Dermatol. 2001;144:297–304.

    CAS  PubMed  CrossRef  Google Scholar 

  425. Otsuka H, Nemoto T. Study on Japanese hair. Koshkaischi. 1988;12:192–7.

    Google Scholar 

  426. Courtois M, Loussouarn G, Hourseau C, Grollier JF. Aging and hair cycles. Br J Dermatol. 1995;132:86–93.

    CAS  PubMed  CrossRef  Google Scholar 

  427. Price VH, Sawaya ME, Headington JT et al. Histology and hormonal activity in senescent thinning in men. Present at SID, Annual Meeting, Washington DC; 2001

    Google Scholar 

  428. Sperling LC. Senescent balding (“senile alopecia”). In: Sperling LC, editor. An atlas of hair pathology with clinical correlations. New York: Parthenon Publishing; 2003. p. 35–6.

    CrossRef  Google Scholar 

  429. Sinclair R, Chapman A, Magee J. The lack of significant changes in scalp hair follicle density with advancing age. Br J Dermatol. 2005;152:646–9.

    CAS  PubMed  CrossRef  Google Scholar 

  430. Whiting DA. How real is senescent alopecia? A histopathologic approach. Clin Dermatol. 2011;29:49–53.

    PubMed  CrossRef  Google Scholar 

  431. Karnik P, Shah S, Dvorkin-Wininger Y, et al. Microarray analysis of androgenetic and senescent alopecia: comparison of gene expression shows two distinct profiles. J Dermatol Sci. 2013;72:183–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  432. Nagase S, Tsuchiya M, Matsui T, Shibuichi S, Tsujimura H, Masukawa Y, Satoh N, Itou T, Koike K, Tsujii K. Characterization of curved hair of Japanese women with reference to internal structures and amino acid composition. J Cosmet Sci. 2008;59:317–32.

    CAS  PubMed  Google Scholar 

  433. Nicolaides N, Rothman S. Studies on the chemical composition of human hair fat. II. The overall composition with regard to age, sex and race. J Invest Dermatol. 1953;21:9–14.

    CAS  PubMed  CrossRef  Google Scholar 

  434. Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351(6273):aad4395.

    PubMed  CrossRef  CAS  Google Scholar 

  435. Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, Nishimura EK. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137:1088–99.

    CAS  PubMed  CrossRef  Google Scholar 

  436. Liu N, Matsumura H, Kato T, Ichinose S, Takada A, Namiki T, Asakawa K, Morinaga H, Mohri Y, De Arcangelis A, Geroges-Labouesse E, Nanba D, Nishimura EK. Stem cell competition orchestrates skin homeostasis and ageing. Nature. 2019;568:344–50.

    CAS  PubMed  CrossRef  Google Scholar 

  437. Floeth M, Fiedorowicz J, Schäcke H, Hammami-Hausli N, Owaribe K, Trüeb RM, Bruckner-Tuderman L. Novel homozygous and compound heterozygous COL17A1 mutations associated with junctional epidermolysis bullosa. J Invest Dermatol. 1998;111:528–33.

    CAS  PubMed  CrossRef  Google Scholar 

  438. Hintner H, Wolff K. Generalized atrophic benign epidermolysis bullosa. Arch Dermatol. 1982;118:375–84.

    CAS  PubMed  CrossRef  Google Scholar 

  439. Natsuga K, Watanabe M, Nishie W, Shimizu H. Life before and beyond blistering: the role of collagen XVII in epidermal physiology. Exp Dermatol. 2019;28:1135–41.

    CAS  PubMed  CrossRef  Google Scholar 

  440. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    CAS  PubMed  CrossRef  Google Scholar 

  441. Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–12.

    CAS  PubMed  CrossRef  Google Scholar 

  442. Kao SH, Liu CS, Wang SY, Wei YH. Ageing-associated large-scale deletions of mitochondrial DNA in human hair follicles. Biochem Mol Biol Int. 1997;42:285–98.

    CAS  PubMed  Google Scholar 

  443. Nakauchi Y, Kumon Y, Yamasaki H, et al. Scalp hair loss caused by octreotide in a patient with acromegaly: a case report. Endocr J. 1995;42(3):385–9.

    CAS  PubMed  CrossRef  Google Scholar 

  444. Yamada S, Fukuhara N, Nishioka H, et al. Scalp hair loss after transsphenoidal adenomectomy in patients with acromegaly. Clin Endocrinol (Oxf). 2013;79:386–93.

    CrossRef  Google Scholar 

  445. Lurie R, Ben-Amitai D, Laron Z. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair. Dermatolog. 2004;208:314–8.

    CAS  CrossRef  Google Scholar 

  446. Rundegren J. Pattern alopecia: what clinical features determine the response to topical minoxidil treatment? (IHRS 2004 abstract B2.4). JDDG. 2004;2:500.

    Google Scholar 

  447. CG 210 hair & scalp lotion. Product monograph. Legacy Healthcare.

    Google Scholar 

  448. Trüeb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol. 2002;37:981–90.

    PubMed  CrossRef  Google Scholar 

  449. Katoulis AC, Liakou AI, Alevizou A, Bonovas S, Bozi E, Kontogiorgi D, Rigopoulos D. Efficacy and safety of a topical botanical in female androgenetic alopecia: a randomized, single-blinded, vehicle-controlled study. Skin Appendage Disord. 2018;4:160–5.

    PubMed  CrossRef  Google Scholar 

  450. McMichael A, Pham A, von Grote E, Meckfessel MH. Efficacy and safety of minoxidil 2% solution in combination with a botanical hair solution in women with female pattern hair loss/androgenic alopecia. J Drugs Dermatol. 2016;15:398–404.

    CAS  PubMed  Google Scholar 

  451. Keaney TC, Pham H, von Grote E, Meckfessel MH. Efficacy and safety of minoxidil 5% foam in combination with a botanical hair solution in men with androgenic alopecia. J Drugs Dermatol. 2016;15:406–12.

    CAS  PubMed  Google Scholar 

  452. Takeda A, Sato A, Zhang L, Harti S, Cauwen-bergh G, et al. CG210 enables finasteride 1 mg users to further improve hair pattern: a randomized, double-blind, placebo-controlled pilot study. Hair Ther Transplant. 2013;3:107.

    Google Scholar 

  453. Cucé LC, Rodrigues CJ, Patriota RCR. Cellium® GC: evaluation of a new natural active ingredient in 210 mg/mL topical solution, through scalp biopsy. Surg Cosmet Dermatol. 2011;3:123–8.

    Google Scholar 

  454. Blatt T, Littarru GP. Biochemical rationale and experimental data on the antiaging properties of CoQ(10) at skin level. Biofactors. 2011;37:381–5.

    CAS  PubMed  CrossRef  Google Scholar 

  455. Giesen M, Welss T, Wiesche ES, et al. Coenzyme Q10 has anti-aging effects on human hair. Int J Cosmet Sci. 2009;31:154–5.

    CrossRef  Google Scholar 

  456. Giesen M, Gruedl S, Holtkoetter O, Fuhrmann G, Koerner A, Petersohn D. Ageing processes influence keratin and KAP expression in human hair follicles. Exp Dermatol. 2011;20:759–61.

    PubMed  CrossRef  Google Scholar 

  457. Choi FD, Sung CT, Juhasz ML, Mesinkovsk NA. Oral collagen supplementation: a systematic review of dermatological applications. J Drugs Dermatol. 2019;18:9–16.

    PubMed  Google Scholar 

  458. Arthur ST, Noone JM, Van Doren BA, Roy D, Blanchette CM. One-year prevalence, comorbidities and cost of cachexia-related inpatient admissions in the USA. Drugs Context. 2014;3:212,265.

    CrossRef  Google Scholar 

  459. von Haehling S. Anker SD. Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle. 2014;5:261–3.

    CrossRef  Google Scholar 

  460. Academy of Nutrition and Dietetics. Nutrition care manual. Chicago, IL: Academy of Nutrition and Dietetics; 2015.

    Google Scholar 

  461. Cathcart P, Craddock C, Stebbing J. Fasting: starving cancer. Lancet Oncol. 2017;18(4):431.

    PubMed  CrossRef  Google Scholar 

  462. Saleh AD, Simone BA, Palazzo J, et al. Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle. 2013;12:1955–63.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  463. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.

    CAS  PubMed  Google Scholar 

  464. Simone BA, Champ CE, Rosenberg AL, Berger AC, Monti DA, Dicker AP, Simone NL. Selectively starving cancer cells through dietary manipulation: methods and clinical implications. Future Oncol. 2013;9:959–76.

    CAS  PubMed  CrossRef  Google Scholar 

  465. Blackburn GL, Bistrian BR, Hoag C. Hair loss with rapid weight loss. Arch Dermatol. 1977;113(2):234.

    CAS  PubMed  CrossRef  Google Scholar 

  466. Zick SM, Snyder D, Abrams DI. Pros and cons of dietary strategies popular among cancer patients. Oncology (Williston Park). 2018;32:542–7.

    Google Scholar 

  467. Dinu M, Abbate R, Gensini GF, et al. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57:3640–9.

    CrossRef  PubMed  Google Scholar 

  468. Gröber U, Holzhauer P, Kisters K, Holick MF, Adamietz IA. Micronutrients in oncological intervention. Nutrients. 2016;8:163.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  469. Micke O, Bruns F, Glatzel M, Schönekaes K, Micke P, Mücke R. Predictive factors for the use of complementary and alternative medicine (CAM) in radiation oncology. Eur J Integr Med. 2009;1:22–30.

    Google Scholar 

  470. Lawenda BD, Kelly KM, Lasas EJ, et al. Should supplemental antioxidant administration be avoided during chemotherapy and radiotherapy? J Natl Cancer Inst. 2008;100:773–83.

    CAS  PubMed  CrossRef  Google Scholar 

  471. Gröber U, Mücke R, Adamietz IA, Holzhauer P, Kisters K, Büntzel J, Micke O. Komplementärer Einsatz von Antioxidanzien aund Mikronährstoffen in der Onkologie – Update 2013. Der Onkol. 2013;19:136–43.

    CrossRef  Google Scholar 

  472. Moss RW. Should patients undergoing chemotherapy and radiotherapy be prescribed antioxidants? Integr Cancer Ther. 2006;5:63–82.

    CAS  PubMed  CrossRef  Google Scholar 

  473. Tong H, Isenring E, Yates P. The prevalence of nutrition impact symptoms and their relationship to quality of life and clinical outcomes in medical oncology patients. Support Care Cancer. 2009;17:83–90.

    CAS  PubMed  CrossRef  Google Scholar 

  474. Fearon KC, Voss AC, Hustend DS. Definition of cancer cachexia: effect of weight loss reduced food intake and systemic inflammation on functional status and prognosis. Am J Clin Nutr. 2006;83:1345–50.

    CAS  PubMed  CrossRef  Google Scholar 

  475. Bozzetti F. SCRINIO Working Group Screening the nutritional status in oncology: a preliminary report on 1000 outpatients. Support Care Cancer. 2009;17:279–84.

    PubMed  CrossRef  Google Scholar 

  476. Harvie M. Nutritional supplements and cancer: potential benefits and proven harms. Am Soc Clin Oncol Educ Book. 2014:e478–86.

    Google Scholar 

  477. Trüeb RM, Jolliffe VML, Régnier AF, et al. Precision medicine and the practice of trichiatry: adapting the concept. Skin Appendage Disord. 2019;5:338–43.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  478. McGarvey EL, Baum LD, Pinkerton RC, et al. Psychological sequelae and alopecia among women with cancer. Cancer Pract. 2001;9:283–9.

    CAS  PubMed  CrossRef  Google Scholar 

  479. Trüeb RM. Chemotherapy-induced anagen effluvium: diffuse or patterned? Dermatology. 2007;215:1–2.

    PubMed  CrossRef  Google Scholar 

  480. Trüeb RM. Chemotherapy-induced alopecia. Semin Cutan Med Surg. 2009;28:11–4.

    PubMed  CrossRef  CAS  Google Scholar 

  481. Baker B, Wilson C, Davis A, et al. Busulphan/cyclophosphamide conditioning for bone marrow transplantation may lead to failure of hair regrowth. Bone Marrow Transplant. 1991;7:43–7.

    CAS  PubMed  Google Scholar 

  482. Vowels M, Chan LL, Giri N, et al. Factors affecting hair regrowth after bone marrow transplantation. Bone Marrow Transplant. 1993;12:347–50.

    CAS  PubMed  Google Scholar 

  483. Kluger N, Jacot W, Frouin E, et al. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients. Ann Oncol. 2012;23:2879–84.

    CAS  PubMed  CrossRef  Google Scholar 

  484. Miteva M, Misciali C, Fanti PA, Vincenzi C, Romanelli P, Tosti A. Permanent alopecia after systemic chemotherapy: a clinicopathological study of 10 cases. Am J Dermatopathol. 2011;33:345–50.

    PubMed  CrossRef  Google Scholar 

  485. Betticher DC, Delmore G, Breitenstein U, et al. Efficacy and tolerability of two scalp cooling systems for the prevention of alopecia associated with docetaxel treatment. Support Care Cancer. 2013;21:2565–73.

    PubMed  CrossRef  Google Scholar 

  486. Plonka PM, Handjiski B, Popik M, Michalczyk D, Paus R. Zinc as an ambivalent but potent modulator of murine hair growth in vivo preliminary observations. Exp Dermatol. 2005;14:844–53.

    CAS  PubMed  CrossRef  Google Scholar 

  487. Tsuruki T, Takahata K, Yoshikawa M. Anti-alopecia mechanisms of soymetide-4, an immunostimulating peptide derived from soy beta-conglycinin. Peptides. 2005;26:707–11.

    CAS  PubMed  CrossRef  Google Scholar 

  488. Sieja K, Taleruyk M. Selenium as an element in the treatment of ovarian cancer in women (n = 31) receiving chemotherapy. Gynecol Oncol. 2004;93:320–7.

    CAS  PubMed  CrossRef  Google Scholar 

  489. Wang J, Lu Z, Au JLS. Protection against chemotherapy-induced alopecia. Pharm Res. 2006;23:2505–14.

    CAS  PubMed  CrossRef  Google Scholar 

  490. Tran D, Sinclair RD, Schwarer AP, et al. Permanent alopecia following chemotherapy and bone marrow transplantation. Austral J Dermatol. 2000;41:106–8.

    CAS  CrossRef  Google Scholar 

  491. Freites-Martinez A, Shapiro J, Chan D, Fornier M, Modi S, Gajria D, Dusza S, Goldfarb S, Lacouture ME. Endocrine therapy-induced alopecia in patients with breast cancer. JAMA Dermatol. 2018;154:670–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  492. Kluger N, Jacot W, Frouin E, et al. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients. Ann Oncol. 2012;23:2879–84.

    CAS  PubMed  CrossRef  Google Scholar 

  493. Trüeb RM. Minoxidil for endocrine therapy-induced alopecia in women with breast cancer-saint Agatha’s Blessing? JAMA Dermatol. 2018;154:656–8.

    PubMed  CrossRef  Google Scholar 

  494. Mundstedt K, Manthey N, Sachsse S, et al. Changes in self-concept and body image during alopecia induced cancer chemotherapy. Support Care Cancer. 1997;5:139–43.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Trüeb .

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Trüeb, R.M. (2020). Nutritional Disorders of the Hair and Their Management. In: Nutrition for Healthy Hair. Springer, Cham. https://doi.org/10.1007/978-3-030-59920-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59920-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59919-5

  • Online ISBN: 978-3-030-59920-1

  • eBook Packages: MedicineMedicine (R0)